153 research outputs found

    Gender in the time of COVID-19: Evaluating national leadership and COVID-19 fatalities

    Get PDF
    In this paper we explore whether countries led by women have fared better during the COVID-19 pandemic than those led by men. Media and public health officials have lauded the perceived gender-related influence on policies and strategies for reducing the deleterious effects of the pandemic. We examine this proposition by analyzing COVID-19-related deaths globally across countries led by men and women. While we find some limited support for lower reported fatality rates in countries led by women, they are not statistically significant. Country cultural values offer more substantive explanation for COVID-19 outcomes. We offer several potential explanations for the pervasive perception that countries led by women have fared better during the pandemic, including data selection bias and Western media bias that amplified the successes of women leaders in OECD countries

    On the vibron dressing in the α\alpha--helicoidal macromolecular chains

    Full text link
    We present a study of the physical properties of the vibrational excitation in α\alpha--helicoidal macromolecular chains, caused by the interaction with acoustical and optical phonon modes. The influence of the temperature and the basic system parameters on the vibron dressing has been analyzed by employing the simple mean--field approach based on the variational extension of the Lang--Firsov unitary transformation. Applied approach predicts a region in system parameter space where one takes place an abrupt transition from partially dressed (light and mobile) to fully dressed (immobile) vibron states. We found that the boundary of this region depends on system temperature and type of bond among structural elements in the macromolecular chain.Comment: 22 pages, 12 figures, title changed, the interaction with optical phonon modes jointly with acoustical ones added, consideration significantly enlarged, references added, the paper develops the results of arxiv:1210.3918, accepted for publication in Chinese Physics

    Exercise training increases mitochondrial content and ex vivo mitochondrial function similarly in patients with type 2 diabetes and in control individuals

    Get PDF
    AIMS/HYPOTHESIS: We previously showed that type 2 diabetic patients are characterised by compromised intrinsic mitochondrial function. Here, we examined if exercise training could increase intrinsic mitochondrial function in diabetic patients compared with control individuals. METHODS: Fifteen male type 2 diabetic patients and 14 male control individuals matched for age, BMI and [Formula: see text] enrolled in a 12 week exercise intervention programme. Ex vivo mitochondrial function was assessed by high-resolution respirometry in permeabilised muscle fibres from vastus lateralis muscle. Before and after training, insulin-stimulated glucose disposal was examined during a hyperinsulinaemic-euglycaemic clamp. RESULTS: Diabetic patients had intrinsically lower ADP-stimulated state 3 respiration and lower carbonyl cyanide 4-(trifluoro-methoxy)phenylhydrazone (FCCP)-induced maximal oxidative respiration, both on glutamate and on glutamate and succinate, and in the presence of palmitoyl-carnitine (p < 0.05). After training, diabetic patients and control individuals showed increased state 3 respiration on the previously mentioned substrates (p < 0.05); however, an increase in FCCP-induced maximal oxidative respiration was observed only in diabetic patients (p < 0.05). The increase in mitochondrial respiration was accompanied by a 30% increase in mitochondrial content upon training (p < 0.01). After adjustment for mitochondrial density, state 3 and FCCP-induced maximal oxidative respiration were similar between groups after training. Improvements in mitochondrial respiration were paralleled by improvements in insulin-stimulated glucose disposal in diabetic patients, with a tendency for this in control individuals. CONCLUSIONS/INTERPRETATION: We confirmed lower intrinsic mitochondrial function in diabetic patients compared with control individuals. Diabetic patients increased their mitochondrial content to the same extent as control individuals and had similar intrinsic mitochondrial function, which occurred parallel with improved insulin sensitivity

    Measurement properties of the Minimal Insomnia Symptom Scale (MISS) in an elderly population in Sweden

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Insomnia is common among elderly people and associated with poor health. The Minimal Insomnia Symptom Scale (MISS) is a three item screening instrument that has been found to be psychometrically sound and capable of identifying insomnia in the general population (20-64 years). However, its measurement properties have not been studied in an elderly population. Our aim was to test the measurement properties of the MISS among people aged 65 + in Sweden, by replicating the original study in an elderly sample.</p> <p>Methods</p> <p>Data from a cross-sectional survey of 548 elderly individuals were analysed in terms of assumptions of summation of items, floor/ceiling effects, reliability and optimal cut-off score by means of ROC-curve analysis and compared with self-reported insomnia criteria.</p> <p>Results</p> <p>Corrected item-total correlations ranged between 0.64-0.70, floor/ceiling effects were 6.6/0.6% and reliability was 0.81. ROC analysis identified the optimal cut-off score as ≥7 (sensitivity, 0.93; specificity, 0.84; positive/negative predictive values, 0.256/0.995). Using this cut-off score, the prevalence of insomnia in the study sample was 21.7% and most frequent among women and the oldest old.</p> <p>Conclusions</p> <p>Data support the measurement properties of the MISS as a possible insomnia screening instrument for elderly persons. This study make evident that the MISS is useful for identifying elderly people with insomnia-like sleep problems. Further studies are needed to assess its usefulness in identifying clinically defined insomnia.</p

    The Mycobacterium tuberculosis Drugome and Its Polypharmacological Implications

    Get PDF
    We report a computational approach that integrates structural bioinformatics, molecular modelling and systems biology to construct a drug-target network on a structural proteome-wide scale. The approach has been applied to the genome of Mycobacterium tuberculosis (M.tb), the causative agent of one of today's most widely spread infectious diseases. The resulting drug-target interaction network for all structurally characterized approved drugs bound to putative M.tb receptors, we refer to as the ‘TB-drugome’. The TB-drugome reveals that approximately one-third of the drugs examined have the potential to be repositioned to treat tuberculosis and that many currently unexploited M.tb receptors may be chemically druggable and could serve as novel anti-tubercular targets. Furthermore, a detailed analysis of the TB-drugome has shed new light on the controversial issues surrounding drug-target networks [1]–[3]. Indeed, our results support the idea that drug-target networks are inherently modular, and further that any observed randomness is mainly caused by biased target coverage. The TB-drugome (http://funsite.sdsc.edu/drugome/TB) has the potential to be a valuable resource in the development of safe and efficient anti-tubercular drugs. More generally the methodology may be applied to other pathogens of interest with results improving as more of their structural proteomes are determined through the continued efforts of structural biology/genomics
    corecore