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Abstract

Software control is a critical issue in cyber-physical systems (CPS); if the expected behavior of the software embedded
in a single device of a CPS cannot be enforced then the behavior of the whole CPS may be in jeopardy. Thus, CPS
stakeholders like having some level of control over the embedded software. Third-party demands to control the
software, however, conflict with the intellectual property protection demanded by software developers, since some
level of detail about the software at hand would have to be disclosed. In the present paper, we discuss the issue of
controlling the software embedded in CPS devices and address the problem of how to achieve an increased level of
software control without compromising the protection of intellectual property. We propose a two-party
fingerprinting scheme that allows for attribution of responsibility in the case of intellectual property leaks. Our
fingerprinting scheme is such that neither party may obtain an advantage over the other by misbehaving,
misrepresenting or by prematurely aborting the protocol, therefore providing a fair means to resolve disputes.

1 Introduction
A cyber-physical system (CPS) is a system composed of
computational devices and physical environments, where
the computational devices can interact via communi-
cation networks, can control physical environments via
actuators, and can receive feedback from physical envi-
ronments via sensors. In a sense, a CPS can be under-
stood as a generalization of the classical control systems
where sensors and actuators correspond to much more
sophisticated computational devices that can make local
autonomous decisions and global coordinated decisions
based on sophisticated logic, which is afforded by the use
of embedded-software smart devices and communication
networks (see Fig. 1). While the precise definition of a
CPS can vary from author to author, there are several
common examples of CPS in the literature, such as smart
grids, autonomous vehicles, medical monitoring, process
control systems, distributed robotics, and automatic pilot
avionics. Because they control physical systems, failures
on a CPS may have catastrophic consequences such as
energy blackouts or airplane crashes. Moreover, CPSs are
frequently associated to public infrastructures, therefore
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having a large number of stakeholders, including gov-
ernment, regulators, infrastructure operators, civil rights
organizations and citizen, which turn the governance of
such systems into a really complex task.
An important characteristic for proper working of a

CPS in the precise characterization of its composing
devices, such as sensors, actuators, and other computa-
tional devices. The stakeholders of a CPS need to be aware
of each device that influences the behavior of the CPS,
including the software that is embedded on such devices.
Software control can occur both in the syntactic level—

i.e., by guaranteeing that the software embedded in a
device corresponds to a previously validated software
version—and in the semantic level—i.e., by guarantee-
ing that the prescribed specification is met. In any case,
the need for software control gives origin to a scenario
where two potentially conflicting parts need to interact
and cooperate. On one side, CPS stakeholders need to
have more control over the software that is embedded in
the CPS devices deployed in several application fields. On
the other side, CPS device manufacturers consider their
software as sensitive intellectual property and are not will-
ing to reveal details of their software, let alone run the
risk of propagating them among third parties. Thus, there
is a tradeoff between third-party software control and
protection of intellectual property.
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Fig. 1 Schematic diagram of a cyber-physical system

Watermarking techniques allow for the embedding of
information in a digital artifact in such a way that the arti-
facts’ functionalities are not impacted. Furthermore, the
removal of a digital watermark must be a difficult task for
a malicious user, so that an attempt to do so will likely lead
to deterioration or destruction of the host artifact. Much
research is under way in distinct application fields (see
Section 2) aiming at the protection of artistic, industrial
and intellectual property. However, the resilience of water-
marks against attacks still lacks formalization. Moreover,
the applicability of watermarks in the chain of security
protocols still demands further study, since the existing
watermarking schemes do not allow for the attribution of
responsibilities in cases of misuse of the artifact. As we
will see, suspicion can usually befall upon both parties
when a dispute takes place. In the context of intellectual
property protection, a watermark that provides unique
identification of a digital artifact is termed fingerprint, and
the artifact that carries it is said to be traceable. Soft-
ware fingerprints have been used as intellectual property
protection tools: if a fingerprinted software is distributed
and an illegal copy is found afterwards, it will be possible
to retrieve its fingerprint and identify the responsible for
the leakage. Software fingerprinting can therefore be used,
in principle, as an ally to achieve software control with
an adequate intellectual property protection level, since a
third party that has access to a fingerprinted software will
be discouraged to leak it. That does not eliminate, how-
ever, the risk that one of the parties that had access to it
does eventually leak it—accidentally or intentionally.
The main problem with such fingerprinting methods,

as we explain next, is that they are not fair, since they do
not prevent, for one thing, non-repudiation attacks, which
therefore compromises their applicability in dispute reso-
lution scenarios. A protocol is fair if no party can gain an
advantage over other parties by misbehaving, misrepre-
senting or by prematurely aborting the protocol. Fairness
is an important requirement in exchange protocols. The

fairness requirement arises when two parties are willing
to exchange digital items, but do not trust each other. In
order to avoid that some of the parties interrupt the pro-
tocol right after receiving the desired digital item, it is
important that the exchange process is atomic, i.e., that
all the items are exchanged at once. Some classical exam-
ples where fairness is a clear requirement are those of
contract signing [1, 2], certified messages [3], and selling
secrets [3].
It is usually difficult to achieve fairness in two-party

protocols. The easiest way of assuring that an exchange
protocol is fair is by recurring to a trusted third party
(TTP); in the first stage, both parties deliver their items to
the TTP who will exchange the items in a second stage.
The scheme is secure, as long as the TTP is honest and
unquestionable. However, such a protocol has the disad-
vantages of any protocol that requires the involvement of
a third party in each and every exchange. Thus, a lot of
effort has been put up lately towards the development of
practical, fair exchange protocols.
The fingerprinting problem considered in the present

work does not involve the exchange of items, since only
one item—the watermarked software—is delivered. We
can consider fairness as a highly important requirement
all the same. Indeed, as discussed before, there are two
potentially conflicting parties, i.e., the software manufac-
turer, who developed the software and wants to protect
the intellectual property, and the CPS stakeholder, who
wants to have some level of control over the software that
is embedded in a CPS device1. It can be argued that, if
one party is the responsible for fingerprinting the soft-
ware, then both parties could have acted maliciously in
the event of a leakage, since both parties had access to
the fingerprinted software. In other words, how could
one guarantee that it was not the manufacturer the ill-
intendioned party, willing to impose guilt on a certain
user/stakeholder?
To be more concrete, consider the following scenario.

Alice wishes to sell a smart device—i.e., a device with
embedded software—to Bob, but fears that Bob could dis-
tribute the software to others. Alice therefore endows the
program with the following sentence: “This software is
meant to be used exclusively by Bob and cannot be redis-
tributed.” Alice cautiously employs digital watermarking
techniques to embed the sentence in a way that avoids
it being found and removed by a malicious Bob. A few
months later, Alice learns that Eva is using an embedded
software device for the precise same application as the
device Alice delivered to Bob. The device’s behavior looks
suspiciously familiar to Alice, who finds out after due anal-
ysis that it happens to have a copy of the software that was
embedded in the device she had sold to Bob. Alice goes
to court. During the trial, Alice provides the judge with
the selling contracts of her device (and software) and the
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version obtained by Eva, in which she is able to pinpoint
the encoded sentence that explicitly points to Bob. When
interrogated, the defendant Bob denies having criminally
shared it. Moreover, he argues that Alice, being the author
of the program, could herself have inserted the incriminat-
ing sentence into any copy of the program she wished and
might as well have distributed the program herself. The
judge grants Bob the benefit of the doubt and dismisses
the case for lack of evidence.
In the present paper, we describe a protocol involving

two participants: the seller, henceforth called Alice, and
the buyer, henceforth called Bob. The protocol will be
built in a way that Alice sends to Bob a traceable artifact
whose fingerprint Alice herself will not be able to know
a posteriori. Such property is achieved by making use of
the oblivious transfer protocol [4] with some appropriate
modifications. Under such a protocol, it will be possible to
determine—with an arbitrarily low probability of error—
the real responsible for the misuse of the artifact. We also
describe a verification mechanism that does not require
the disclosure of the fingerprint contents or location even
to the arbitrator.
The paper is structured as follows. In Section 2, we

describe known approaches to support the protection
of digital intellectual property. We introduce our finger-
printing protocol in Section 3. In Section 4, we describe
a verification scheme, based on the partial transfer of
knowledge, which keeps the fingerprint contents and loca-
tion safe in the case of a trial. Section 5 contains our
concluding remarks.

2 Related works
2.1 Software control in cyber-physical systems
CPSs are frequently related to critical infrastructures,
therefore having a large number of stakeholders interested
in their correct operation. In particular, such stakehold-
ers now perceive that an appropriate control over a CPS
depends on the control of the software that is embedded
in the CPS devices. There are basically three key points
the stakeholder must be confident in:

• that the embedded version of the software indeed
functions as it is supposed to;

• that, under normal operation, the software can not be
arbitrarily substituted by an operator;

• that, during a periodic control and particularly in
case of suspicion of misuse, the CPS stakeholder will
have tools to check which precise version of the
software is embedded in a CPS device.

Formally, software control refers to the general problem
of establishing an adequate level of control over the soft-
ware that is used in a given application. Software control
is not a requirement restricted to cyber-physical systems,

and comprises a series of activities that are classical in
Computer Science, namely:

Validation. The ability to verify that a software behaves
as specified.
Authorization. The ability to prevent arbitrary software
substitution.
Verification. The ability to identify the embedded soft-
ware version.

The origins of software validation trace back to the
very origins of computer programs and their attempted
formal definitions. Indeed, classical theoretical computer
science results refer to the general impossibility of deter-
mining/enforcing properties of programs, such as the
well-known theorems by Turing [5] and Rice [6]. Classi-
cal programming analysis tools and their representations
such as flowcharts, control flow graphs, and call graphs [7]
help both the development and the characterization of
computer programs, and some formal methods [8] aim
at developing software whose behaviors (possible states
and their transitions) can be completely characterized. A
myriad of software engineering methods [9, 10] has been
developed with the goal of providing some level of con-
trol over complex enterprise information systems. Despite
the large number of methods and tools, the general goal is
one and the same: to provide confidence that the software
behaves as it should behave, performing the tasks it was
programmed to perform—and nothing else. In the field of
cyber-physical systems and critical systems in general, it
has become increasingly common that government, regu-
lators and users require more mature validation processes
before a new version of software is deployed. Examples
include regulations in Canada and Brazil [11, 12], which
specify requirements to be adopted before the approval
of metering devices. Both regulations are based on the
International Organization of Legal Metrology’s Guid-
ance document D-31: General Requirements for Software
Controlled Measuring Instruments [13]. In the case of
Canada [11], the source code per se does not constitute an
input for the validation, as the assessment process is based
on functional tests and documentation review. The regu-
lation in Brazil [12], on the other hand, relies on source
code disclosure to perform deeper validation tests during
the assessment process. It also includes functional tests
and documentation review.
Authorization refers to the process whereby a stake-

holder registers their accordance to a particular software
version to be used in a given application. In the field of
cyber-physical systems, it aims at guaranteeing that no
software will be embedded in a device without proper per-
mission. In practice, it means that the device will have the
ability of verifying the credentials of users that want to
update the software, and to check that the new version
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was authorized for that application, in the first place—for
instance, by means of a digital signature protocol. Exam-
ple usages of such a protocol include mobile computing
applications, which assure users that the signed applica-
tions are from a known source and they have not been
altered, at least from the last signature [14]. Apple man-
ufacturer also uses code signing, not only on applications
but also to perform operating system updates on personal
computers and mobile devices. As an example of smart
devices that use digital signature protocol, we can cite the
payroll recorders adopted in some countries, in which the
software update is only possible after the authority agency
has digitally signed the software.
Verification refers to the ability of proving that the soft-

ware embedded in a device corresponds to a version of
software previously authorized for that application. In
some countries, the verification of smart meters such
as energy meters and payroll recorders is a requirement
[12, 15]. The subject has been extensively studied in the
last two decades, coinciding with the widespread dissem-
ination of smart devices and embedded software in gen-
eral. Some works propose the formalization of the basic
steps of the verification process [16, 17], while other works
are concerned in establishing the root of trust (RoT) [18].
Recently, some works [19, 20] propose the use of physi-
cally unclonable functions (PUFs) to integrate the verifi-
cation process, making it more tamper-resistant. Kovah
et al. [21] present a verification scheme based on time
for personal and corporate computers, claiming that even
with the network delay, it achieves good results. A sim-
ilar approach was conducted by Preschern et al. [22] for
safety-critical systems. The work by Francillon et al. [17]
maps the minimal collection of hardware and software
components that are needed for a secure verification,
based on a precise definition of the desired verification
service. Armknecht2013 et al. [16] present a security
framework that formally captures security goals, attacker
models and various system and design parameters aim-
ing at increasing the confidence on the verification
process.

2.2 Watermarking for intellectual property protection
In the literature, there are plenty of works tackling the
embedding of digital watermarks in artifacts such as
images [23], audio and video [23, 24], text documents
[25, 26], and computer programs [27, 28]. However, it
is in the field of software protection that the develop-
ment of fruitful approaches has been most markedly
noted.
Methods for protection of intellectual property of

software range from legal protection to technological pro-
tection. From the standpoint of legal protection, govern-
ment, and industry seek regulatory mechanisms related
to industry and trade, such as patent laws, copyrights,

and trade secrets [29]. From the standpoint of technologi-
cal protection, several techniques have been developed to
avoid reverse engineering, tampering, and illegal distribu-
tion of software.
Obfuscation techniques aim at making reverse engi-

neering a difficult task. They are based on semantics-
preserving transformations whichmanage to considerably
worsen the results provided by standard software analysis
tools. Tamper-proofing techniques aim at detecting unau-
thorised software modifications and responding to them.
Detection methods are based on code introspection, state
inspection and/or environment verification. The respond-
ing methods vary, but the most common ones are pro-
gram termination, performance degradation, or program
restore.
Software watermarking techniques aim at discouraging

piracy by detecting and tracing illegal distributions. They
can be classified based on their embedder and extractor
algorithms, and on their static or dynamic nature. Static
watermarks lie within the code or data segments of a pro-
gram, whereas dynamic watermarks are built in the pro-
gram states during its execution. Embedding algorithms
are typically based on code substitution, code reorder-
ing, register allocation, control flow graphs, abstrac-
tion interpretation, and opaque predicates. Surveys on
state-of-the-art watermarking techniques can be found
in [27, 28].
The focus of this work is to support dispute resolving by

means of an intelligent watermark usage. The text is there-
fore agnostic to embedding and extracting algorithm’s
particularities. In a typical dispute resolving scenario, two
participants claim authorship (or legitimate ownership) of
a digital artifact. The goal of the proposed protocol is to
allow that a TTP (a judge, an arbitrator) solves the dispute
by comparing the proofs presented by the participants.
There are numerous works that deal with this problem for
audio, video, and image artifacts [30, 31]. We deal with the
dispute-resolving problem concerning software. To our
knowledge, our study is the first, in the context of soft-
ware protection, which deals with the fairness between
parties, that is, which is able to dismiss arguments about
the seller’s (ill-)intentions.
Moreover, it is to our knowledge the first to provide a

verification scheme in which the arbitrator does not need
to have access to the fingerprint itself. This allows for, say,
a partially trustworthy arbitrator.

3 The proposed fingerprinting protocol
As discussed along the paper, the main difficulty in con-
ceiving a fair fingerprinting protocol without recurring to
a TTP is the fact that the party responsible for inserting
the watermark will necessarily have access to both ver-
sions of the digital artifact: the traceable and the untrace-
able one. If this party is ill-intentioned—for example,
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intending to distribute ilegal copies of the digital artifact—
she may choose to distribute the version that does not
incriminate her; or, equivalently, which does incriminate
someone else.
The protocol we propose consists in a modification of

the oblivious transfer protocol. Essentially, we employ the
oblivious transfer protocol 1-of-n, where n is a sufficient
number of functionally equivalent versions of the soft-
ware, but each with a syntactically distinct watermark—
even though they all identify the author. In this protocol,
one of n possible messages is transmitted, but Alice (the
seller) is unaware of which one was transmitted. Thus,
although the seller has been responsible for inserting the
watermark, she does not know which version was actually
received by the buyer. If, later on, Alice finds any reason to
distribute (maliciously) any version of the software, then
with high probability, she will distribute a version that was
not the same one sent to Bob (the buyer). And if she dis-
tributes all versions, then it will become quite clear for a
judge that the seller herself is to blame. It takes several
adjustments to the protocol to prevent non-repudiation
attacks. We describe next such adjustments, starting from
a basic fingerprinting protocol based on oblivious trans-
fer (Section 3.2) until we get to a more robust version
(Section 3.4). Note that although our motivating prob-
lem is the one of fingerprinting software, we describe the
protocols generically for “digital artifacts”. As long as a
digital content—e.g., text files, images, music etc.—can be
watermarked, they can be involved in such protocols.
Through this section, we assume the existence of water-

marking tools and diversity tools, i.e.,

Watermarking assumption. There exist practical tools
that receive as input a digital item together with an infor-
mation to be embedded in that item and output an “equiv-
alent” digital item that encodes that input information
(i.e., the information appear as a watermark of the output
item).
Diversity assumption. There exist practical tools that
receive as input a digital item and output an “equivalent”
digital item whose content is distinct form the input.

The theoretical existence of the above described tools
is a current research topic, but in practice, there are
several tools in for software watermarking and software
diversity—a good reference for these tools is the book of
Collberg.

3.1 Basics of oblivious transfer
In the present section, we describe the classical concept
of oblivious transfer [4], which is the key tool to achieve
fairness in our proposed fingerprinting protocol. Oblivi-
ous transfer allows the transference of an item among a
set of items in such a way that the sender is not aware of

which item was transferred. We illustrate with a concrete
example.
Suppose Alice sells digital books and Bob wants to buy a

book from Alice. However, Bob would like to keep secret
about the item he is interested in, either for privacy rea-
sons, or to avoid receiving unwanted advertising in the
future, or for any other reason. The cryptography proto-
col called oblivious transfer makes it possible to transfer
the electronic content fromAlice to Bob in such a way that
Alice will have no idea about which content has interested
Bob.
More formally, assume Alice defines m1, . . . ,mk mes-

sages and Bob wants access to the ith message from Alice.
Essentially, Alice transfers all themessagesm1, ...,mk , each
one encrypted with a distinct symmetric key derived from
a key chosen by Bob so that only the ith encrypted mes-
sage can be decrypted by Bob. Further details of this
protocol are described in Section 3.
Several oblivious transfer models can be found in the

literature, but they are in a sense equivalent [32–35].
The oblivious transfer concept plays an important role in
building other more complex protocols [3].

3.2 Initial fingerprinting protocol based on oblivious
transfer

We introduce a naive version of a fair fingerprinting pro-
tocol that makes use of the classic version of the oblivious
transfer protocol, which allows the transference of an ele-
ment from a set without the transmitter knowing which
one was transmitted. We start with this basic version to
better understand each proposed modification, and we
evolve to the final protocol step by step after considering
several possible attack models.
Concretely, Alice, a software developer, generates a large

number of equivalent versions of the same software—
which can be achieved via the use of software diver-
sity tools—and each version is distinctly watermaked by
Alice—using an watermarking scheme at choice, such as
the ones in [36] and references thereby.

Basic fingerprinting protocol
1. Alice creates α semantically equivalent variations

n1, . . . , nα of a digital artifact.
2. Alice watermarks each of the variations of the of a

digital artifact.
3. Alice creates α pairs of public/private keys

Pr1,Pu1, . . . ,Prα ,Puα , and sends the public keys
Pu1, . . . ,Puα to Bob.

4. Bob creates a random symmetric key k and encrypts
it with one public key Pui among its α public keys of
Alice, resulting in EPui(k). Bob sends EPui(k) to Alice.

5. Alice decrypts EPui(k) with each private key Prj
among its α private keys, obtaining DPrj(EPui(k)),
with j = 1, . . . ,α.
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6. Alice encrypts each artifact nj among its α variations
with the keyDPrj(EPui(k)), obtaining EDPrj (EPui (k))(nj),
and sends to Bob each EDPrj (EPui (k))(nj).

7. Bob decrypts each EDPrj (EPui (k))(nj), obtaining
Dk(EDPrj (EPui (k))(nj)) and only when i = j he will have
a consistent digital artifact.

The key for understanding the above protocol is to note
that, in Step 5, Alice will obtain α “possible keys”, only
one of which will be Bob’s actual key k. It is, however,
impossible for Alice to know which key that is.
To identify responsibilities for improper use of the soft-

ware, the arbitrator will need to have access to all the
information generated during the protocol steps: the ver-
sions of the original digital artifact, the public, and private
keys. The verification protocol, to be executed by the arbi-
trator, for identifying a fingerprinted version f (ñ) is the
following:

Basic verification protocol
1. Verify if the fingerprint f (ñ) is the same as in any of

the traceable artifacts n1, . . . , nα .

Observe that is still necessary to guarantee that Alice,
in fact, generated α software versions with distinct finger-
prints, and to havemechanisms to ensure that Bob, in fact,
participated of the protocol execution.

3.3 Fingerprinting protocol with guarantee of distinct
fingerprints

The verification protocol above allows a simple attack by
Alice. Alice can generate α variants of the digital artifact
containing all the same fingerprint. This allows her to dis-
tribute any of the artifacts and blaming Bob. To avoid this
attack, the arbitrator must verify that Alice, in fact, gener-
ated α artifacts with distinct fingerprints. A recent work
about the generation and verification of distinct finger-
prints based on a randomized graph-based scheme can be
found in [36].

Verification protocol with a naive test of distinct
fingerprints

1. Verify if the fingerprints f (n1), . . . , f (fα) are mutually
distinct.

2. Verify if the fingerprint f (ñ) is the same as in any of
the artifacts n1, . . . , nα .

The modification above seems to be enough to guar-
antee that Alice cannot distribute one of the artifacts
n1, . . . , nα because, with high probability, it will be a
distinct artifact from the one obtained by Bob. However,
there is no guarantee that the artifacts shown to the
arbitrator are, in fact, the artifacts involved in the pro-
tocol. At this point, the distinction between the aim of

the proposed protocol and that of the classic oblivious
transfer protocol should be clear. In the basic protocol,
there is only an interest in transferring an element from
a certain set from Alice to Bob, without Alice knowing
which the transferred element was. In this modified ver-
sion of the fingerprinting protocol, it is fundamental that
it can be demonstrated later on that all the elements were
involved during the execution of the protocol, that is, the
arbitrator should know which elements could have been
transferred to Bob. This necessity requires some more
modifications.
Our protocol will now encompass actions to make sure

that Alice indeed generated α variants of the artifact
with different fingerprints. To guarantee that, the modi-
fied protocol includes sending cryptographic hashes of the
artifacts by Alice to Bob.

Fingerprinting protocol with guarantee of
distinct fingerprints

1. Alice creates α semantically equivalent variations
n1, . . . , nα of a digital artifact.

2. Alice generates cryptographic hashes
h(n1), . . . , h(nα), signs them and sends to Bob
(h(n1), . . . , h(nα), sA(h(n1)| . . . |h(nα)).

3. Bob verifies the signature of the hashes signed by
Alice and returns the cryptographic hashes signed by
him: (h(n1), . . . , h(nα), sB(h(n1)| . . . |h(nα)).

4. Alice verifies the signature of the hashes sent by Bob,
creates α pairs of public/private keys Pr1,Pu1, . . . ,
Prα ,Puα , and sends the public keys Pu1, . . . ,Puα to
Bob.

5. Bob creates a random symmetric key k and encrypts
it with one public key Pui among its α public keys of
Alice, resulting in EPui(k). Bob sends EPui(k) to Alice.

6. Alice decrypts EPui(k) with each private key Prj
among its α private keys, obtaining DPrj(EPui(k)),
with j = 1, . . . ,α.

7. Alice encrypts each artifact nj among its α variations
with the keyDPrj(EPui(k)), obtaining EDPrj (EPui (k))(nj),
and sends to Bob each EDPrj (EPui (k))(nj).

8. Bob decrypts each EDPrj (EPui (k))(nj), obtaining
Dk(EDPrj (EPui (k))(nj)) and only when i = j he will have
a consistent digital artifact.

The inclusion of Step 2 makes it possible to
check the set of artifacts that Alice generated dur-
ing the execution of the protocol. Naturally, the
arbitrator will need to have access to the message
(h(n1), . . . , h(nα), sA(h(n1)| . . . |h(nα)) to execute the
verification algorithm. Step 3 indicates that Bob had
knowledge of the cryptographic hashes involved in the
protocol. The verification protocol to be executed by the
arbitrator is the following:
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Verification protocol to guarantee distinct
fingerprints

1. Verify if the signature sA(h(n1)| . . . |h(nα) is valid and
if each artifact ni has the correct cryptographic hash
h(ni).

2. Verify if the signature sB(h(n1)| . . . |h(nα)) is valid.
3. Verify if the fingerprints f (n1), . . . , f (fα) are mutually

distinct.
4. Verify if the fingerprint f (ñ) is the same as in any of

the artifacts n1, . . . , nα .

Step 1 allows the arbitrator to certify the set of arti-
facts involved during the execution of the protocol,
resisting against the identical fingerprints attack. Step 2
ensures that Bob was involved during the execution of the
protocol.

3.4 Resistant protocol against non-repudiation attacks
Another challenge for the construction of the proposed
fingerprinting protocol consists in identifying the version
sent to Bob. Without it, it is impossible to the arbitrator
imputing blame onto Bob for a possible artifact misuse.
Obviously, this identification must occur a posteriori, i.e.,
upon the arbitrator’s request. However, the inputs for this
identification must still be provided by Alice. In prac-
tice, the proposed solution consists in Bob sending to
Alice a cryptographic hash of his secret key, together with
the digital signature. This modification can be seen in
Step 6.

Resistant protocol against non-repudiation
attacks

1. Alice creates α semantically equivalent variations
n1, . . . , nα of a digital artifact.

2. Alice generates cryptographic hashes
h(n1), . . . , h(nα), signs and sends them to Bob
(h(n1), . . . , h(nα), sA(h(n1)| . . . |h(nα)).

3. Bob verifies the signature of the hashes signed by
Alice and returns the cryptographic hashes signed by
him: (h(n1), . . . , h(nα), sB(h(n1)| . . . |h(nα)).

4. Alice verifies the signature of the hashes signed by
Bob, creates α pairs of public/private keys
Pr1,Pu1, . . . ,Prα ,Puα , and sends the public keys
Pu1, . . . ,Puα to Bob.

5. Bob creates a random symmetric key k and encrypts
it with one public key Pui among its α public keys of
Alice, resulting in EPui(k). Bob sends EPui(k) to Alice.

6. Bob sends to Alice a cryptographic hash h(k) of k,
together with the digital signatures of h(k) and
EPui(k): (h(k), sB(h(k)), sB(EPui(k)))

7. Alice verifies the signature of the objects signed by
Bob and decrypts EPui(k) with each private key Prj
among its α private keys, obtaining DPrj(EPui(k)),
with j = 1, . . . ,α.

8. Alice encrypts each artifact nj among its α variations
with the keyDPrj(EPui(k)), obtaining EDPrj (EPui (k))(nj),
and sends to Bob each EDPrj (EPui (k))(nj).

9. Bob decrypts each EDPrj (EPui (k))(nj), obtaining
Dk(EDPrj (EPui (k))(nj)) and only when i = j he will have
a consistent digital artifact.

To execute the new verification algorithm, the arbitra-
tor will need to have access to k, given by Bob, as well
as to h(k), sB(h(k))), EPui(k) e sB(EPui(k)). Access to all α
public keys and α private keys generated by Alice is also
necessary.

Verification protocol with identification of Bob’s
key

1. Verify if the signature sA(h(n1)| . . . |h(nα) is valid and
if each artifact ni has the correct cryptographic hash
h(ni).

2. Verify if the signature sB(h(n1)| . . . |h(nα)) is valid.
3. Verify if the fingerprints f (n1), . . . , f (fα) are mutually

distinct.
4. Verify if the fingerprint f (ñ) is the same as in any of

the artifacts n1, . . . , nα

5. Verify if the signatures sB(h(k)) over h(k) and
sB(EPui(k)) over EPui(k) are valid and if the key k
given by Bob has, in fact, the cryptographic hash h(k).

Step 5 ensures that Bob was indeed given the same
private key encrypted with one of Alice’s public keys dur-
ing the execution of the protocol. With the informations
above, the arbitrator is able to identify the version ni
obtained by Bob—by testing each of Alice’s private keys—
and, finally, to verify whether the fingerprint f (ni)) is
the same as the fingerprint f (ñ). Figure 2 wraps up the
proposed fingerprinting protocol.

4 Secure verification protocol for software
fingerprinting

In this section, we develop a protocol that allows for
fingerprint verification during a trial without revealing
its contents or location, not even to the arbitrator. The
simple exhibition of its contents or location makes it
easier for an adversary/attacker to tamper with it. The
protocol development starts from a scheme of partial
transfer of knowledge, and afterwards, we describe its
application in the scenario of secure verification of fin-
gerprints. The main advantage of the use of the partial
transfer of knowledge scheme is the possibility to reveal
information about authorship/ownership embed exactly
in the bits to be shown, without making it any easier
for an attacker to infer the content or location of the
fingerprint. Since the transfer is partial, an attacker
willing to remove the fingerprint will not have enough
information to locate it within the artifact, so its removal
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Fig. 2 Proposed fingerprinting protocol

will remain as hard after the verification as it used to be
before it.

4.1 Partial transfer of knowledge scheme
In Kilian’s doctoral thesis [37], the following problem is
described. Bob wants to factor a number n with 500 bits
which is known to be the product of five prime numbers
of 100 bits. Alice knows one of the factors, denoted q, and
is willing to sell 25 of its bits to Bob. Kilian proposes a
method that allows Bob to make sure that Alice indeed
knows one of the factors of n, and moreover allows Bob
to make sure that each individual bit of q has been cor-
rectly informed by Alice. The proposed scheme not only
allows the disclosure of only some bits of q but also uses
schemes of commitment of individual bits of q to ensure
that those bits will not be disclosed without the consent
of Alice. Finally, it allows for the use of oblivious trans-
fer in such a way that Alice is unaware of the bits that get
actually disclosed to Bob.
Next, we present a scheme for a simplified scenario of

disclosure of some bits of q, allowing us to observe essen-
tial aspects of the protocol, which we have referred to as
“partial transfer of knowledge”. In the proposed scenario,

Alice is not financially interested in the bits to be trans-
ferred; Alice is willing to reveal some bits of q to anyone
wanting to know them. On the other hand, Alice only
agrees to reveal a certain subset of bits of q—by con-
vention, we assume that Alice always reveal the most
significant bits of q, although her choice is arbitrary. The
fact that such set is predetermined makes it unneces-
sary to use oblivious transfer here. In such a scenario,
Alice is able to show the most significant bits of q, prov-
ing to whom it may concern that, in fact, they are part
of the bits of one of the factors of n. The scheme is
simple and intuitive, and makes use of polynomial reduc-
tions and zero-knowledge proofs, based on the difficulty
of factorization hypothesis. It is easy to verify that the
proposed methods can be adapted to employ other clas-
sical problems that are notedly hard, such as the discrete
logarithm.
Given a positive integer n which is the product of

two prime numbers p and q, we want to show that a
given sequence of bits k corresponds to the most sig-
nificant bits (or prefix) of p, without revealing any of
the factors. The protocol is based, essentially, in the
application of zero-knowledge schemes and polynomial



Machado et al. EURASIP Journal on Information Security  (2016) 2016:8 Page 9 of 14

transformations between variants of the integer factor-
ization problem and variants of the boolean satisfiability
problem.

4.1.1 Reducing EQUICOMPOSITE to SAT
Initially, we show the problem to determine if a num-
ber is composite can be easily reduced to the problem of
determining if a logical expression is satisfiable, a prob-
lem well known as SAT [38]. More precisely, we consider
the variant EQUICOMPOSITE of the factorization prob-
lem, where it is possible to determine if an integer n can be
written as a product of two factors, each one with at most
�log2(n)/2� bits.

EQUICOMPOSITE
Input: binary number n, with �log2(n)� bits.
Output: YES, if n is the product of two numbers with bit
size up to �log2(n)/2�;

NO, otherwise.
To deal with the EQUICOMPOSITE problem using

zero-knowledge proofs, we will study the implementation
of variants of the multiplication operation using combina-
tional circuits, or, equivalently, using logical expressions
involving the bits of the operands.

4.1.2 Product of integers as a logical function
It is known that the product operation of two binary num-
bers can be described as a combinational circuit, being
each digit of the result a logical expression on the digits of
the operands. For the sake of completeness, a brief review
about the theory behind it is given.
Adding bits. It is easy to implement a combinational

circuit that receives as input two bits A and B (the
operands) and a third bit Ci (the “carry”, defined in the
previous stage), returning as output (1) the bit S resulting
from the sum of the three input bits and (2) a new “carry”
bit Co (Fig. 3).
Observe that both bits S and Co can be described by

logical expressions applied over the bits A, B, and Ci:

Fig. 3 Representation of a 1-bit full adder

• S = (A ⊕ B) ⊕ Ci
• Co = (A · B) + (Ci · (A ⊕ B))

Naturally, the XOR (“exclusive or”, denoted by ⊕) may
be replaced by operations OR (+) and AND (·), according
to the formula A ⊕ B = ĀB + AB̄.
Chained full adders. To do the sum of binary numbers

with more than one bit, we need to chain full adders to
one another, sending the output carry bit from one stage
to the input of the next stage (Fig. 4).
One more time, each one of the output bits can be

described as a logical expression applied over the input
bits.
Multiplying by a power of two. The multiplication by

two, in binary, can be performed as a simple left shift,
adding a 0 bit as the least significant output digit.Wewrite
the left shift of i bits (multiplication by 2i) applied to a
binary number B as B << i.
Obtaining the product of two binary numbers. In

a simplified way, the multiplication operation over bina-
ries can be understood as a sequence of additions and
multiplications by two. For instance, to multiply A =
A3A2A1A0 by B = B3B2B1B0, we start with the rightmost
bit of one of the operands, say, A. If the bit A0 is 1, we add
the value of the other operand, B, to the result C (initially
zero); if the bit A0 is 0, no value is added. For each one of
the consecutive bitsAi ofA, we perform a left shift of size i
on B (i.e., we multiply B by 2i) and we add it to the result if
and only if Ai = 1. The result, written as a logical expres-
sion, is equivalent to C = B∧A0+(B << 1)∧A1+(B <<

2) ∧ A2 + (B << 3) ∧ A3 (Fig. 5).
Building a single output. Knowing how to describe the

product of two binary numbers in the form of a combi-
national circuit makes it is easy to adapt it to a modified
circuit that has a single output bit whose value is 1 if and
only if a certain number n is equicomposite. To accom-
plish that, we need to add NOT ports to each output of
the multiplier circuit related to one bit of n that must be 0,
and connect all the outputs to a single AND port.
Formally, a circuit UNI-MULT(d, n), where d is an inte-

ger and n is a binary number, is built as shown in Fig. 6,
with a multiplier circuit of two binary numbers of d bits,
with a NOT port in each output of the multiplier, related
to one bit 0 of n, and with an AND port connecting all the
2d outputs (inverted or not). Theorem 1, whose proof is
quite simple, reads as follows.

Theorem1. The circuit UNI-MULT(d, n) returns the bit
1 if and only if the binary number n may be written as a
product of two binary numbers of up to d bits.

4.1.3 The PREFACTOR problem
Now, we consider the problem of determining if a
number may be written as a product of two other
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Fig. 4 Representation of a 4-bit adder

numbers, and one of them is a set of bits whose
values have been previously fixed. More precisely, con-
sider the following decision problem, which we call
PREFACTOR.

PREFACTOR
Input: binary numbers n and k.
Sa?da: YES, if n is equicomposite and has a factor whose
prefix is k;

NO, otherwise.

Knowing how to reduce EQUICOMPOSITE to SAT,
it becomes simple to understand how to reduce the
PREFACTOR problem to SAT. Hence, our goal is to deter-
mine whether a number is the product of two other
numbers, and one of them starts with a predetermined set
of bits. Our strategy is to build a circuit that is similar to
the one in Fig. 6, but with some of the bits shortcircuited
directly into the last stage of the circuit, which receives an
additional AND port as illustrated in Fig. 7.
Formally, a circuit PRE-MULT(d, n, k), where d is inte-

ger and n and k are binary numbers, is built as shown in

Fig. 5 Representation of a k-bit multiplier
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Fig. 6 UNI-MULT: fixing the output bits with a final AND port

Fig. 7. Initially, we have a circuit UNI-MULT(d, n). For
each input bit of the circuit UNI-MULT(d, n) related with
a bit of k, we derive it and connect it to a NOT port if
such bit is 0 in k. The derivations are all connected to
an AND port, as well as to the output bit of the circuit
UNI-MULT(d, n). The Theorem 2 wraps up the idea of
the PRE-MULT circuit.

Theorem 2. The circuit PRE-MULT(d, n, k) returns a
bit 1 if and only if the binary number n may be written as

a product of two binary numbers up to d bits, one of them
having k as its prefix.

4.1.4 Converting to the conjunctive normal form
The reader will observe, again, that the output of the cir-
cuit PRE-MULT(d, n, k) is a logical function on the input
bits. However, in order to use the framework of complex-
ity theory and its polynomial reductions, it is necessary to
have a logical expression in the conjunctive normal form.
Fortunately, the transformations of Tseitin [39] allows us

Fig. 7 PRE-MULT: fixing the first four bits of A in “1100”
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to build, from any logical expression σ , a new logical
expression σ ′ whose size is linear in the size of σ . More-
over, the transformation is executed in linear time in the
size of σ .

4.1.5 Using zero-knowledge proofs
Knowing how to reduce the problem PREFACTOR to
SAT, we can simply recur to zero-knowledge proofs with
polynomial reductions. We can, for example, reduce a
SAT instance to a 3-COLORING instance in polyno-
mial time [40], and then use a classical scheme of zero-
knowledge proof for this last problem [41].

4.2 Fingerprint verification
Consider a fingerprint in a computer program codified
as a subgraph of its control-flow graph. For an attacker
who is not familiar with the subgraph location within the
control-flow graph of the program, the task of removing
the fingerprint is quite difficult, even if the attacker knows
how the subgraph is generated. This happens because of
the hardness of the isomorphism of subgraphsGraphThe-
ory classic problem. However, once the seller exhibits it,
revealing its location, the fingerprint removal becomes
easy.
To demonstrate the authorship/ownership of the digital

artifact based on the algorithm described in Section 4.1,
we will use the following strategy. First, we will codify an
information regarding authorship/ownership in a binary
number k. We select two prime numbers p and q, and one
of them has exactly k as the most significant bits (prefix),
and we compute the product n of the numbers p and q.
The resulting product will be embedded within the digital
artifact, appearing in the form of a substring, i.e., a subse-
quence of bits (more precisely, appearing as a substring of
the bit sequence obtained from the digital artifact after the
execution of the extractor algorithm). The motivation for
this strategy is the fact that we can show k without being
necessary to reveal the location of n.
Now, we will consider a slight variation of the extrac-

tor algorithm, which we call pre-extractor. This algorithm,
instead of returning exactly the fingerprint (previ-
ously embedded by the embedder algorithm), returns
a sequence of bits—possibly a long one—that contains
the fingerprint as a substring. More precisely, the sub-
string will be, as we have seen, the product of two
prime numbers, one of them having the fingerprint as a
prefix.

4.2.1 The problem SUBSTRING-PREFACTOR
Consider the following decision problem.

SUBSTRING-PREFACTOR
Input: binary numbers d and k, and an integer N .
Output: YES, if there is a substring n of d, with N bits,

such that n is equicomposite and one of its factors has k
as prefix;

NO, otherwise.
It is easy to see the problem SUBSTRING-PREFATOR

can also be reduced to SAT. In fact, we need to build
a circuit PRE-MULT (similar to the circuit built in the
PREFACTOR problem) for each substring of size N , and
to apply an OR port to the outputs of each one of the
bitsize(d) − N + 1 circuits.

4.2.2 Generating the fingerprint
The generation of the fingerprint follows. Given an infor-
mation m to be embedded, we need to generate two
random prime number p and q of the same bit size, such
thatm is the prefix of p, and compute the product n = p·q,
the sequence of bits that will be embedded in the digi-
tal artifact. The generation of qmay follow the traditional
methods for picking random numbers and testing primal-
ity until one gets a prime number. The generation of p
follows a slightly modified approach; a random number is
generated and concatenated to the right of m, only then
to test primality, repeating the process a prime number
ensues.

4.2.3 Embedding the fingerprint
The process of embedding the fingerprint aims at mod-
ifying the digital artifact, making the sequence of bits
n = p · q appears as a substring of the string retrieved by
the extractor algorithm. In practice, the exact embedding
process—and the extraction process—depends on the dig-
ital artifact type. In the case of a software, one could use
a watermarking scheme based on the modification of the
control flow graph [36].

4.2.4 Verifying the fingerprint
The fingerprint verification comprises the following steps:

1. Extraction of the sequence of bits embedded in the
digital artifact—such sequence may be very long, but
it contains n = p · q as a substring.

2. Transformation of the generated sequence into an
instance of SAT, and then to an instance of
3-COLORING.

3. Use of the zero-knowledge scheme to demonstrate
that the graph obtained in the previous step is
3-colorable.

The extraction of the sequence of bits which we refer
to in the first step can be done by specific algorithms,
which must be defined for each field of application and
their corresponding digital artifacts. The transformation
to an instance of SAT is attained precisely by the algorithm
described in Section 4.1, while the polynomial reduction



Machado et al. EURASIP Journal on Information Security  (2016) 2016:8 Page 13 of 14

from SAT to 3-COLORING is well known [40]. An inter-
active proof scheme of zero-knowledge for 3-COLORING
is described on [41] and can be used in the last stage to
exhibit the fingerprint without revealing n or any of its
factors.

5 Conclusions
In the present work, we describe a protocol which
increases the use of fingerprinting tools in dispute scenar-
ios related to intellectual property. The proposed protocol
assumes the existence of watermarking schemes that meet
the requirements of stealth, resilience, and verifiability.
We also describe a secure way for verifying the fingerprint
without exposing its contents or location. This is achieved
via partial transfer of knowledge, which is an application
of Zero-Knowledge Proofs.

Endnote
1Note that there can be several stakeholders and

interested parties, such as users, regulators etc. Their
relations, though, will be modelled as two-party relations
in this paper.
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