178 research outputs found
Strategic Deterrence and the Cruise Missile
This, the 1977 prizewinner, argues that the cruise missile is stabilizing, adds an effective element to deterrence, and is an inappropriate arms limitation bargaining chip to squander in order to achieve Backfire Bomber basing restrictions
No variations in transit times for Qatar-1 b
The transiting hot Jupiter planet Qatar-1 b was presented to exhibit
variations in transit times that could be of perturbative nature. A hot Jupiter
with a planetary companion on a nearby orbit would constitute an unprecedented
planetary configuration, important for theories of formation and evolution of
planetary systems. We performed a photometric follow-up campaign to confirm or
refute transit timing variations. We extend the baseline of transit
observations by acquiring 18 new transit light curves acquired with 0.6-2.0 m
telescopes. These photometric time series, together with data available in the
literature, were analyzed in a homogenous way to derive reliable transit
parameters and their uncertainties. We show that the dataset of transit times
is consistent with a linear ephemeris leaving no hint for any periodic
variations with a range of 1 min. We find no compelling evidence for the
existence of a close-in planetary companion to Qatar-1 b. This finding is in
line with a paradigm that hot Jupiters are not components of compact
multi-planetary systems. Based on dynamical simulations, we place tighter
constraints on a mass of any fictitious nearby planet in the system.
Furthermore, new transit light curves allowed us to redetermine system
parameters with the precision better than that reported in previous studies.
Our values generally agree with previous determinations.Comment: Accepted for publication in A&
Departure from the constant-period ephemeris for the transiting exoplanet WASP-12 b
Most hot Jupiters are expected to spiral in towards their host stars due to
transfering of the angular momentum of the orbital motion to the stellar spin.
Their orbits can also precess due to planet-star interactions. Calculations
show that both effects could be detected for the very-hot exoplanet WASP-12 b
using the method of precise transit timing over a timespan of the order of 10
yr. We acquired new precise light curves for 29 transits of WASP-12 b,
spannning 4 observing seasons from November 2012 to February 2016. New
mid-transit times, together with literature ones, were used to refine the
transit ephemeris and analyse the timing residuals. We find that the transit
times of WASP-12 b do not follow a linear ephemeris with a 5 sigma confidence
level. They may be approximated with a quadratic ephemeris that gives a rate of
change in the orbital period of -2.56 +/- 0.40 x 10^{-2} s/yr. The tidal
quality parameter of the host star was found to be equal to 2.5 x 10^5 that is
comparable to theoretical predictions for Sun-like stars. We also consider a
model, in which the observed timing residuals are interpreted as a result of
the apsidal precession. We find, however, that this model is statistically less
probable than the orbital decay.Comment: Accepted for publication in A&A Letter
New transit observations for HAT-P-30 b, HAT-P-37 b, TrES-5 b, WASP-28 b, WASP-36 b, and WASP-39 b
We present new transit light curves for planets in six extrasolar planetary
systems. They were acquired with 0.4-2.2 m telescopes located in west Asia,
Europe, and South America. When combined with literature data, they allowed us
to redetermine system parameters in a homogeneous way. Our results for
individual systems are in agreement with values reported in previous studies.
We refined transit ephemerides and reduced uncertainties of orbital periods by
a factor between 2 and 7. No sign of any variations in transit times was
detected for the planets studied.Comment: Submitted to Acta Astronomic
Transit Timing Analysis in the HAT-P-32 system
We present the results of 45 transit observations obtained for the transiting
exoplanet HAT-P-32b. The transits have been observed using several telescopes
mainly throughout the YETI network. In 25 cases, complete transit light curves
with a timing precision better than min have been obtained. These light
curves have been used to refine the system properties, namely inclination ,
planet-to-star radius ratio , and the ratio between
the semimajor axis and the stellar radius . First analyses by
Hartman et al. (2011) suggest the existence of a second planet in the system,
thus we tried to find an additional body using the transit timing variation
(TTV) technique. Taking also literature data points into account, we can
explain all mid-transit times by refining the linear ephemeris by 21ms. Thus we
can exclude TTV amplitudes of more than min.Comment: MNRAS accepted; 13 pages, 10 figure
Transit Timing Analysis in the HAT-P-32 System
We present the results of 45 transit observations obtained for the transiting exoplanet HATP- 32b. The transits have been observed using several telescopes mainly throughout the YETI (Young Exoplanet Transit Initiative) network. In 25 cases, complete transit light curves with a timing precision better than 1.4 min have been obtained. These light curves have been used to refine the system properties, namely inclination i, planet-to-star radius ratio Rp/Rs, and the ratio between the semimajor axis and the stellar radius a/Rs. First analyses by Hartman et al. suggests the existence of a second planet in the system, thus we tried to find an additional body using the transit timing variation (TTV) technique. Taking also the literature data points into account, we can explain all mid-transit times by refining the linear ephemeris by 21 ms. Thus, we can exclude TTV amplitudes of more than ∼1.5min
- …