848 research outputs found
Results of the First Coincident Observations by Two Laser-Interferometric Gravitational Wave Detectors
We report an upper bound on the strain amplitude of gravitational wave bursts
in a waveband from around 800Hz to 1.25kHz. In an effective coincident
observing period of 62 hours, the prototype laser interferometric gravitational
wave detectors of the University of Glasgow and Max Planck Institute for
Quantum Optics, have set a limit of 4.9E-16, averaging over wave polarizations
and incident directions. This is roughly a factor of 2 worse than the
theoretical best limit that the detectors could have set, the excess being due
to unmodelled non-Gaussian noise. The experiment has demonstrated the viability
of the kind of observations planned for the large-scale interferometers that
should be on-line in a few years time.Comment: 11 pages, 2 postscript figure
A nonlinear detection algorithm for periodic signals in gravitational wave detectors
We present an algorithm for the detection of periodic sources of
gravitational waves with interferometric detectors that is based on a special
symmetry of the problem: the contributions to the phase modulation of the
signal from the earth rotation are exactly equal and opposite at any two
instants of time separated by half a sidereal day; the corresponding is true
for the contributions from the earth orbital motion for half a sidereal year,
assuming a circular orbit. The addition of phases through multiplications of
the shifted time series gives a demodulated signal; specific attention is given
to the reduction of noise mixing resulting from these multiplications. We
discuss the statistics of this algorithm for all-sky searches (which include a
parameterization of the source spin-down), in particular its optimal
sensitivity as a function of required computational power. Two specific
examples of all-sky searches (broad-band and narrow-band) are explored
numerically, and their performances are compared with the stack-slide technique
(P. R. Brady, T. Creighton, Phys. Rev. D, 61, 082001).Comment: 9 pages, 3 figures, to appear in Phys. Rev.
Influence of lasers propagation delay on the sensitivity of atom interferometers
In atom interferometers based on two photon transitions, the delay induced by
the difference of the laser beams paths makes the interferometer sensitive to
the fluctuations of the frequency of the lasers. We first study, in the general
case, how the laser frequency noise affects the performance of the
interferometer measurement. Our calculations are compared with the measurements
performed on our cold atom gravimeter based on stimulated Raman transitions. We
finally extend this study to the case of cold atom gradiometers.Comment: 17 pages, 6 figure
Comparison between two mobile absolute gravimeters: optical versus atomic interferometers
We report a comparison between two absolute gravimeters: the LNE-SYRTE cold
atoms gravimeter and FG5#220 of Leibniz Universit\"at of Hannover. They rely on
different principles of operation: atomic and optical interferometry. Both are
movable which enabled them to participated to the last International Comparison
of Absolute Gravimeters (ICAG'09) at BIPM. Immediately after, their bilateral
comparison took place in the LNE watt balance laboratory and showed an
agreement of 4.3 +/- 6.4 {\mu}Gal
Perturbations of the local gravity field due to mass distribution on precise measuring instruments: a numerical method applied to a cold atom gravimeter
We present a numerical method, based on a FEM simulation, for the
determination of the gravitational field generated by massive objects, whatever
geometry and space mass density they have. The method was applied for the
determination of the self gravity effect of an absolute cold atom gravimeter
which aims at a relative uncertainty of 10-9. The deduced bias, calculated with
a perturbative treatment, is finally presented. The perturbation reaches (1.3
\pm 0.1) \times 10-9 of the Earth's gravitational field.Comment: 12 pages, 7 figure
A 1.82 m^2 ring laser gyroscope for nano-rotational motion sensing
We present a fully active-controlled He-Ne ring laser gyroscope, operating in
square cavity 1.35 m in side. The apparatus is designed to provide a very low
mechanical and thermal drift of the ring cavity geometry and is conceived to be
operative in two different orientations of the laser plane, in order to detect
rotations around the vertical or the horizontal direction. Since June 2010 the
system is active inside the Virgo interferometer central area with the aim of
performing high sensitivity measurements of environmental rotational noise. So
far, continuous not attempted operation of the gyroscope has been longer than
30 days. The main characteristics of the laser, the active remote-controlled
stabilization systems and the data acquisition techniques are presented. An
off-line data processing, supported by a simple model of the sensor, is shown
to improve the effective long term stability. A rotational sensitivity at the
level of ten nanoradiants per squareroot of Hz below 1 Hz, very close to the
required specification for the improvement of the Virgo suspension control
system, is demonstrated for the configuration where the laser plane is
horizontal
New Upper Limit of Terrestrial Equivalence Principle Test for Rotating Extended Bodies
Improved terrestrial experiment to test the equivalence principle for
rotating extended bodies is presented, and a new upper limit for the violation
of the equivalence principle is obtained at the level of 1.6, which is limited by the friction of the rotating gyroscope. It
means the spin-gravity interaction between the extended bodies has not been
observed at this level.Comment: 4 page
Pharmacological Blockade of the Calcium Plateau Provides Neuroprotection Following Organophosphate Paraoxon Induced Status Epilepticus in Rats
Organophosphate (OP) compounds which include nerve agents and pesticides are considered chemical threat agents. Currently approved antidotes are crucial in limiting OP mediated acute mortality. However, survivors of lethal OP exposure exhibit delayed neuronal injury and chronic behavioral morbidities. In this study, we investigated neuroprotective capabilities of dantrolene and carisbamate in a rat survival model of paraoxon (POX) induced status epilepticus (SE). Significant elevations in hippocampal calcium levels were observed 48-h post POX SE survival, and treatment with dantrolene (10 mg/kg, i.m.) and carisbamate (90 mg/kg, i.m.) lowered these protracted calcium elevations. POX SE induced delayed neuronal injury as characterized by Fluoro Jade C labeling was observed in critical brain areas including the dentate gyrus, parietal cortex, amygdala, and thalamus. Dantrolene and carisbamate treatment provided significant neuroprotection against delayed neuronal damage in these brain regions when administered one-hour after POX-SE. These results indicate that dantrolene or carisbamate could be effective adjuvant therapies to the existing countermeasures to reduce neuronal injury and behavioral morbidities post OP SE survival
Sagnac Interferometer as a Speed-Meter-Type, Quantum-Nondemolition Gravitational-Wave Detector
According to quantum measurement theory, "speed meters" -- devices that
measure the momentum, or speed, of free test masses -- are immune to the
standard quantum limit (SQL). It is shown that a Sagnac-interferometer
gravitational-wave detector is a speed meter and therefore in principle it can
beat the SQL by large amounts over a wide band of frequencies. It is shown,
further, that, when one ignores optical losses, a signal-recycled Sagnac
interferometer with Fabry-Perot arm cavities has precisely the same
performance, for the same circulating light power, as the Michelson speed-meter
interferometer recently invented and studied by P. Purdue and the author. The
influence of optical losses is not studied, but it is plausible that they be
fairly unimportant for the Sagnac, as for other speed meters. With squeezed
vacuum (squeeze factor ) injected into its dark port, the
recycled Sagnac can beat the SQL by a factor over the
frequency band 10 {\rm Hz} \alt f \alt 150 {\rm Hz} using the same
circulating power kW as is used by the (quantum limited)
second-generation Advanced LIGO interferometers -- if other noise sources are
made sufficiently small. It is concluded that the Sagnac optical configuration,
with signal recycling and squeezed-vacuum injection, is an attractive candidate
for third-generation interferometric gravitational-wave detectors (LIGO-III and
EURO).Comment: 12 pages, 6 figure
Noise reduction in gravitational wave interferometers using feedback
We show that the quantum locking scheme recently proposed by Courty {\it et
al.} [Phys. Rev. Lett. {\bf 90}, 083601 (2003)] for the reduction of back
action noise is able to significantly improve the sensitivity of the next
generation of gravitational wave interferometers.Comment: 12 pages, 2 figures, in print in the Special Issue of J. Opt. B on
Fluctuations and Noise in Photonics and Quantum Optic
- …
