700 research outputs found

    Orbital phase resolved spectroscopy of 4U1538-52 with MAXI

    Full text link
    4U 1538-52, an absorbed high mass X-ray binary with an orbital period of 3.73 days, shows moderate orbital intensity modulations with a low level of counts during the eclipse. Several models have been proposed to explain the accretion at different orbital phases by a spherically symmetric stellar wind from the companion. The aim of this work is to study both the light curve and orbital phase spectroscopy of this source in the long term. Particularly, the folded light curve and the changes of the spectral parameters with orbital phase to analyse the stellar wind of QV Nor, the mass donor of this binary system. We used all the observations made from the Gas Slit Camera on board MAXI of 4U 1538-52 covering many orbits continuously. We obtained the good interval times for every orbital phase range which were the input to extract our data. We estimated the orbital period of the system and then folded the light curves and we fitted the X-ray spectra with the same model for every orbital phase spectrum. We also extracted the averaged spectrum of all the MAXI data available. The MAXI spectra in the 2-20 keV energy range were fitted with an absorbed Comptonization of cool photons on hot electrons. We found a strong orbital dependence of the absorption column density but neither the fluorescence iron emission line nor low energy excess were needed to fit the MAXI spectra. The variation of the spectral parameters over the binary orbit were used to examine the mode of accretion onto the neutron star in 4U 1538-52. We deduce a best value of M˙/v=0.65×109\dot{M}/v_\infty=0.65\times 10^{-9} Myr1/(kms1)M_{\odot} \, yr^{-1}/(km \, s^{-1}) for QV Nor.Comment: 12 pages, 5 figures, accepted to be published by A&A, corrected typos (changing bold font to normal one

    Fitts' Law for speed-accuracy trade-off is a diversity sweet spot in sensorimotor control

    Get PDF
    Human sensorimotor control exhibits remarkable speed and accuracy, as celebrated in Fitts' law for reaching. Much less studied is how this is possible despite being implemented by neurons and muscle components with severe speed-accuracy tradeoffs (SATs). Here we develop a theory that connects the SATs at the system and hardware levels, and use it to explain Fitts' law for reaching and related laws. These results show that diversity between hardware components can be exploited to achieve both fast and accurate control performance using slow or inaccurate hardware. Such “diversity sweet spots'' (DSSs) are ubiquitous in biology and technology, and explain why large heterogeneities exist in biological and technical components and how both engineers and natural selection routinely evolve fast and accurate systems from imperfect hardware

    Regulation of Signal Transducer and Activator of Transcription Signaling by the Tyrosine Phosphatase PTP-BL

    Get PDF
    SummarySignal Transducer and Activator of Transcription (STAT) proteins are a family of latent cytoplasmic transcription factors that are activated by tyrosine phosphorylation after cytokine stimulation. One mechanism by which STAT signaling is regulated is by dephosphorylation through the action of protein tyrosine phosphatases (PTP). We have identified PTP-Basophil like (PTP-BL) as a STAT PTP. PTP-BL dephosphorylates STAT proteins in vitro and in vivo, resulting in attenuation of STAT-mediated gene activation. In CD4+ T cells, PTP-BL deficiency leads to increased and prolonged activation of STAT4 and STAT6, and consequently enhanced T helper 1 (Th1) and Th2 cell differentiation. Taken together, our findings demonstrate that PTP-BL is a physiologically important negative regulator of the STAT signaling pathway

    βSubunits Promote K+ Channel Surface Expression through Effects Early in Biosynthesis

    Get PDF
    AbstractVoltage-gated K+ channels are protein complexes composed of ion-conducting integral membrane α subunits and cytoplasmic β subunits. Here, we show that, in transfected mammalian cells, the predominant β subunit isoform in brain, Kvβ2, associates with the Kv1.2 α subunit early in channel biosynthesis and that Kvβ2 exerts multiple chaperone-like effects on associated Kv1.2 including promotion of cotranslational N-linked glycosylation of the nascent Kv1.2 polypeptide, increased stability of Kvβ2/Kv1.2 complexes, and increased efficiency of cell surface expression of Kv1.2. Taken together, these results indicate that while some cytoplasmic K+ channel β subunits affect the inactivation kinetics of α subunits, a more general, and perhaps more fundamental, role is to mediate the biosynthetic maturation and surface expression of voltage-gated K+ channel complexes. These findings provide a molecular basis for recent genetic studies indicating that β subunits are key determinants of neuronal excitability

    Black hole candidate XTE J1752-223: Swift observations of canonical states during outburst

    Full text link
    We present Swift broadband observations of the recently discovered black hole candidate, X-ray transient, XTE J1752-223, obtained over the period of outburst from October 2009 to June 2010. From Swift-UVOT data we confirm the presence of an optical counterpart which displays variability correlated, in the soft state, to the X-ray emission observed by Swift-XRT. The optical counterpart also displays hysteretical behaviour between the states not normally observed in the optical bands, suggesting a possible contribution from a synchrotron emitting jet to the optical emission in the rising hard state. We offer a purely phenomenological treatment of the spectra as an indication of the canonical spectral state of the source during different periods of the outburst. We find that the high energy hardness-intensity diagrams over two separate bands follows the canonical behavior, confirming the spectral states. Our XRT timing analysis shows that in the hard state there is significant variability below 10Hz which is more pronounced at low energies, while during the soft state the level of variability is consistent with being minimal. These properties of XTE J1752-223 support its candidacy as a black hole in the Galactic centre region.Comment: 8 pages, 8 figures; MNRAS in pres

    A decelerating jet observed by the EVN and VLBA in the X-ray transient XTE J1752-223

    Full text link
    The recently discovered Galactic X-ray transient XTE J1752-223 entered its first known outburst in 2010, emitting from the X-ray to the radio regimes. Its general X-ray properties were consistent with those of a black hole candidate in various spectral states, when ejection of jet components is expected. To verify this, we carried out very long baseline interferometry (VLBI) observations. The measurements were carried out with the European VLBI Network (EVN) and the Very Long Baseline Array (VLBA) at four epochs in 2010 February. The images at the first three epochs show a moving jet component that is significantly decelerated by the last epoch, when a new jet component appears that is likely to be associated with the receding jet side. The overall picture is consistent with an initially mildly relativistic jet, interacting with the interstellar medium or with swept-up material along the jet. The brightening of the receding ejecta at the final epoch can be well explained by initial Doppler deboosting of the emission in the decelerating jet.Comment: Accepted for publication in MNRAS Letters. 5 pages, 2 figure

    Fitts' Law for speed-accuracy trade-off is a diversity sweet spot in sensorimotor control

    Get PDF
    Human sensorimotor control exhibits remarkable speed and accuracy, as celebrated in Fitts' law for reaching. Much less studied is how this is possible despite being implemented by neurons and muscle components with severe speed-accuracy tradeoffs (SATs). Here we develop a theory that connects the SATs at the system and hardware levels, and use it to explain Fitts' law for reaching and related laws. These results show that diversity between hardware components can be exploited to achieve both fast and accurate control performance using slow or inaccurate hardware. Such “diversity sweet spots'' (DSSs) are ubiquitous in biology and technology, and explain why large heterogeneities exist in biological and technical components and how both engineers and natural selection routinely evolve fast and accurate systems from imperfect hardware

    Pre-clinical medical student cardiac point-of-care ultrasound curriculum based on the American Society of Echocardiography recommendations : a pilot and feasibility study

    Get PDF
    Background: Cardiac point-of-care ultrasound (POCUS) training has been integrated into medical school curricula. However, there is no standardized cardiac POCUS training method for medical students. To address this issue, the American Society of Echocardiography (ASE) proposed a framework for medical student cardiac POCUS training. The objective of this pilot study was to develop a medical student cardiac POCUS curriculum with test scoring systems and test the curriculum feasibility for a future definitive study. Methods: Based on the ASE-recommended framework, we developed a cardiac POCUS curriculum consisting of a pre-training online module and hands-on training with a hand-held ultrasound (Butterfly iQ, Butterfly Network Inc., Guilford, CT, USA). The curriculum learning effects were assessed with a 10-point maximum skill test and a 40-point maximum knowledge test at pre-, immediate post-, and 8-week post-training. To determine the curriculum feasibility, we planned to recruit 6 pre-clinical medical students. We semi-quantitatively evaluated the curriculum feasibility in terms of recruitment rate, follow-up rate 8 weeks after training, instructional design of the curriculum, the effect size (ES) of the test score improvements, and participant satisfaction. To gather validity evidence of the skill test, interrater and test-retest reliability of 3 blinded raters were assessed. Results: Six pre-clinical medical students participated in the curriculum. The recruitment rate was 100% (6/6 students) and the follow-up rate 8 weeks after training was 100% (6/6). ESs of skill and knowledge test score differences between pre- and immediate post-, and between pre- and 8-week post-training were large. The students reported high satisfaction with the curriculum. Both interrater and test-retest reliability of the skill test were excellent. Conclusions: This pilot study confirmed the curriculum design as feasible with instructional design modifications including the hands-on training group size, content of the cardiac POCUS lecture, hands-on teaching instructions, and hand-held ultrasound usage. Based on the pilot study findings, we plan to conduct the definitive study with the primary outcome of long-term skill retention 8 weeks after initial training. The definitive study has been registered in ClinicalTrials.gov (Identifier: NCT04083924)
    corecore