4U 1538-52, an absorbed high mass X-ray binary with an orbital period of 3.73
days, shows moderate orbital intensity modulations with a low level of counts
during the eclipse. Several models have been proposed to explain the accretion
at different orbital phases by a spherically symmetric stellar wind from the
companion. The aim of this work is to study both the light curve and orbital
phase spectroscopy of this source in the long term. Particularly, the folded
light curve and the changes of the spectral parameters with orbital phase to
analyse the stellar wind of QV Nor, the mass donor of this binary system. We
used all the observations made from the Gas Slit Camera on board MAXI of 4U
1538-52 covering many orbits continuously. We obtained the good interval times
for every orbital phase range which were the input to extract our data. We
estimated the orbital period of the system and then folded the light curves and
we fitted the X-ray spectra with the same model for every orbital phase
spectrum. We also extracted the averaged spectrum of all the MAXI data
available. The MAXI spectra in the 2-20 keV energy range were fitted with an
absorbed Comptonization of cool photons on hot electrons. We found a strong
orbital dependence of the absorption column density but neither the
fluorescence iron emission line nor low energy excess were needed to fit the
MAXI spectra. The variation of the spectral parameters over the binary orbit
were used to examine the mode of accretion onto the neutron star in 4U 1538-52.
We deduce a best value of M˙/v∞=0.65×10−9M⊙yr−1/(kms−1) for QV Nor.Comment: 12 pages, 5 figures, accepted to be published by A&A, corrected typos
(changing bold font to normal one