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SUMMARY

Signal Transducer and Activator of Transcrip-
tion (STAT) proteins are a family of latent cyto-
plasmic transcription factors that are activated
by tyrosine phosphorylation after cytokine
stimulation. One mechanism by which STAT
signaling is regulated is by dephosphorylation
through the action of protein tyrosine phospha-
tases (PTP). We have identified PTP-Basophil
like (PTP-BL) as a STAT PTP. PTP-BL dephos-
phorylates STAT proteins in vitro and in vivo, re-
sulting in attenuation of STAT-mediated gene
activation. In CD4+ T cells, PTP-BL deficiency
leads to increased and prolonged activation of
STAT4 and STAT6, and consequently enhanced
T helper 1 (Th1) and Th2 cell differentiation.
Taken together, our findings demonstrate that
PTP-BL is a physiologically important negative
regulator of the STAT signaling pathway.

INTRODUCTION

Cytokines are important regulators of immune responses,

and numerous cytokines mediate their biologic function

through activation of the signal transducer and activator

of transcription (STAT) signaling pathway (O’Shea et al.,

2002). Ligand binding to the cytokine receptor activates

receptor-associated Janus kinases (JAKs), which ulti-

mately results in the tyrosine phosphorylation of latent

cytoplasmic STAT proteins and their subsequent translo-

cation into the nucleus where they bind to target genes

and effect gene transcription. For example, IL-12 and

IL-4 are the cytokines that are principally responsible for

activating the genetic programs necessary for the differ-

entiation of naive CD4+ T helper (Th) cells into Th1 and

Th2 cells, and they do so by activating STAT4 and

STAT6, respectively (Murphy and Reiner, 2002). Indeed,

studies on STAT4- and STAT6-deficient mice confirmed
I

the importance of these signaling molecules for the differ-

entiation of Th1 and Th2 cells (Kaplan et al., 1996a, 1996b;

Shimoda et al., 1996; Takeda et al., 1996; Thierfelder et al.,

1996; Wurster et al., 2000).

A number of proteins have been reported to modulate

STAT signaling at various steps in the signaling pathway

(Shuai, 2000). In particular, efficient attenuation of STAT

signaling is important for the regulation of cytokine-

mediated immune responses, and recently, four main

classes of regulatory molecules that negatively affect the

STAT signaling pathway have been reported (Shuai

and Liu, 2003). First, suppressor of cytokine signaling

(SOCS) proteins bind either to activated JAK proteins re-

sulting in the direct inhibition of JAK activity, or in some

cases to the docking site in the cytokine receptor to which

the STATs must bind for their activation by JAK kinases

(Alexander and Hilton, 2004). Second, protein inhibitor of

activated STAT (PIAS) molecules interact directly with

STAT proteins and inhibit STAT function by either blocking

their DNA binding activity (Chung et al., 1997; Liu et al.,

1998, 2004), recruiting corepressor molecules (Arora

et al., 2003) or promoting the conjugation of small ubiqui-

tin-related modifier (SUMO) (Rogers et al., 2003; Ungur-

eanu et al., 2003). Third, we have recently identified

a LIM domain-containing protein that promotes the ubiq-

uitination and subsequent proteosome-mediated degra-

dation of activated STAT proteins (Tanaka et al., 2005). Fi-

nally, given that tyrosine phosphorylation of STAT proteins

is required for their dimerization, nuclear translocation, nu-

clear retention, DNA binding activity, and transactivation,

the action of protein tyrosine phosphatases (PTP) is also

thought to be important in regulating the STAT signaling

pathway.

Several PTP have been reported to dephosphorylate

either JAK and/or STAT proteins. SHP-1 (David et al.,

1995; Klingmuller et al., 1995), SHP-2 (You et al., 1999),

CD45 (Irie-Sasaki et al., 2001), PTP1B (Myers et al.,

2001), and TC-PTP (Simoncic et al., 2002) have all been

shown to be capable of dephosphorylating activated

JAK proteins. The dephosphorylation of STAT proteins

can be regulated by PTP in either the cytoplasm or nu-

cleus, and individual PTP show some degree of specificity
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Figure 1. PTP-BL Interacts with STAT4

(A) Schematic diagram of the leucine zipper motif of STAT4 used as bait in a yeast two-hybrid screen for STAT-interacting proteins.

(B) PTP-BL interacts with STAT4 independent of tyrosine phosphorylation. Expression vectors for FLAG-tagged STAT4 wild-type (WT) or Y693F mu-

tant (1.0 mg each) were cotransfected into 293T cells together with those for c-Myc-tagged PTP-BL frame-shift (FS) or C2285S (CS) mutants (11 mg

each) as indicated. Total cell lysates prepared from the transfected cells stimulated with IFN-a (1000 U/ml) for 30 min, or left unstimulated, were im-

munoprecipitated (IP) with anti-c-Myc and subjected to immunoblot with anti-STAT4. Data are representative of three independent experiments.
for STAT family members. For example, SHP-2 has been

shown to interact with STAT5 (Chen et al., 2003; Chughtai

et al., 2002) and STAT1 (Wu et al., 2002), and SHP-2-

deficient mouse embryonic fibroblasts (MEFs) have im-

paired dephosphorylation of STAT5 mainly in the cyto-

plasm and of STAT1 in nucleus, indicating that SHP-2 is

involved in both cytoplasmic and nuclear dephosphoryla-

tion of STAT proteins. In contrast to SHP-2, TC-PTP acts

on STAT1, and to a lesser degree STAT3, but not STAT5 or

STAT6 (Meyer et al., 2003; ten Hoeve et al., 2002). In TC-

PTP-deficient MEFs, both cytoplasmic and nuclear phos-

phorylation of STAT1 is prolonged compared to wild-type

MEFs. Of the PTP that are known to act on STAT proteins,

none have been shown to be primarily responsible for

dephosphorylating STAT4 or STAT6. Therefore, the iden-

tification of additional PTP, in particular those that in-

activate these two STAT proteins, is necessary to more

fully understand the mechanism by which the STAT sig-

naling pathway is regulated during the differentiation of

Th cells.

In the present study, we used a yeast two-hybrid screen

to discover molecules that interact with STAT4 in the

hopes of identifying new regulators of this signaling path-

way. Here we describe the interaction between STAT

proteins and the tyrosine phosphatase PTP-BL, and we

provide evidence that PTP-BL is a physiologically impor-

tant negative regulator of the STAT signaling pathway.

PTP-BL dephosphorylates not only STAT4 but also other

STAT family members both in vitro and in vivo. Moreover,

STAT phosphorylation is both increased and prolonged in

PTP-BL-deficient cells, which results in enhanced Th1 and

Th2 cell differentiation.
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RESULTS

PTP-BL Interacts with STAT4

STAT4 is one of seven mammalian STAT proteins and is

required for the differentiation of Th1 cells from naive

CD4+ T cells. Aside from the action of PIASx, which was

reported to inhibit STAT4-mediated transcription by func-

tioning as a corepressor (Arora et al., 2003), little is known

about how the activity of this particular STAT protein is

regulated. Thus, we sought to identify proteins that inter-

act with STAT4 and modulate its function to further under-

stand the regulatory mechanisms underlying STAT4

signaling. Three-dimensional structure analysis of the

STAT protein showed that the N-terminal region contains

a coiled-coil domain thought important for mediating pro-

tein-protein interactions (Becker et al., 1998). Indeed, this

domain has been shown to interact with several transcrip-

tion factors including IRF-9, c-Jun (Zhang et al., 1999), and

STAT3-interacting protein (StIP1) (Collum et al., 2000).

Moreover, amino acids 250 to 310 in the STAT4 coiled-

coil domain encode a leucine zipper motif (Yamamoto

et al., 1994). We therefore made a bait construct contain-

ing the leucine zipper region of STAT4 for use in a yeast

two-hybrid screen for STAT4-interacting proteins (Fig-

ure 1A). We screened a cDNA library prepared from a

mouse Th1 cell clone, and seven cDNAs were isolated

from 3 3 106 independent yeast transformants. One

cDNA encoded a portion of a previously identified PTP,

PTP-Basophil (BAS)-like or PTP-BL (Erdmann, 2003).

To confirm the interaction between PTP-BL and STAT4

in mammalian cells, we performed a coimmunopreci-

pitation experiment. It is difficult to demonstrate the
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interaction between a catalytically active PTP and its sub-

strate because of the decreased affinity of the interaction

after dephosphorylation of the substrate, so c-Myc-

tagged expression vectors of PTP-BL encoding either

a C2285S (CS) mutant that destroys PTPase activity or

a frame shift (FS) mutant as control were cotransfected

with a FLAG-tagged expression vector encoding wild-

type (WT) STAT4 into 293T cells. 2 days after transfection,

cells were stimulated with IFN-a for 30 min or left unstimu-

lated, and total cell lysates were immunoprecipitated with

c-Myc antibody and analyzed by immunoblot with anti-

STAT4. As shown in Figure 1B, STAT4 could be coimmu-

noprecipitated with PTP-BL (CS) independent of cytokine

stimulation. When the Y693F mutant of STAT4, which can-

not be tyrosine phosphorylated upon cytokine stimulation,

was used instead of WT STAT4, this mutant could also be

coimmunoprecipitated with PTP-BL. These results dem-

onstrate that PTP-BL interacts with STAT4, and it does

so independent of phosphorylation of the conserved tyro-

sine residue in the C terminus of STAT4.

PTP-BL Dephosphorylates STAT4 through

Its PTPase Domain

To examine whether PTP-BL overexpression can affect

the phosphorylation state of STAT4 in vivo, a FLAG-

tagged STAT4 expression vector was cotransfected with

three forms of c-Myc-tagged PTP-BL expression vectors

(frame shift mutant, FS; wild-type, WT; C-terminal PTPase

domain-deleted, DC) into 293T cells. 24 hr after transfec-

tion, cells were stimulated with IFN-a for 30 min, or left

unstimulated, and total cell lysates were immunoprecipi-

tated with FLAG antibody and analyzed by immunoblot

with anti-phospho-STAT4. In the absence of PTP-BL ex-

pression, IFN-a stimulation induced the phosphorylation

of STAT4, whereas overexpression of PTP-BL (WT) re-

sulted in a substantial decrease (up to 30%) in the amount

of STAT4 phosphorylation (Figure 2A). In contrast, over-

expression of mutated PTP-BL (DC) led to enhanced (ap-

proximately 2-fold) phosphorylation of STAT4, suggesting

that mutated PTP-BL (DC) may act as a dominant negative

in vivo.

Because tyrosine phosphorylation of STAT4 is required

for it to translocate into the nucleus and activate gene

transcription, the effect of PTP-BL overexpression on

STAT4-mediated transactivation was investigated. 293T

cells were transiently transfected with a luciferase reporter

gene containing two copies of a high-affinity STAT binding

site derived from IRF-1 promoter. Cotransfection of the re-

porter gene with a STAT4 expression vector resulted in a

3-fold increase in luciferase activity when the cells were

stimulated with IFN-a (Figure 2B). Overexpression of

PTP-BL (WT) led to an inhibition in STAT4-mediated trans-

activation from this reporter construct, whereas overex-

pression of mutated PTP-BL (DC) led to a slight increase

in reporter activity. Taken together, these results suggest

that PTP-BL negatively regulates the STAT4 signaling

pathway by potentiating the desphosphrylation of STAT4

through its PTPase domain.
To confirm that PTP-BL can directly dephosphorylate

STAT4, we performed an in vitro PTPase assay with re-

combinant protein. Baculovirus encoding GST-tagged

PTPase domain were generated, and GST-tagged protein

was obtained by affinity purification (Figure 2C). For the

substrate, tyrosine phosphorylated STAT4 was immuno-

precipitated from IFN-a-stimulated 293T transfectants.

As shown in Figure 2D, incubation of activated STAT4

immunoprecipitates with recombinant PTPase domain

resulted in complete dephosphorylation of STAT4. This

result demonstrates that STAT4 is a direct substrate of

PTP-BL.

PTP-BL Inhibits IL-12 Signaling at the Level

of STAT4 Phosphorylation

To examine the effect of PTP-BL overexpression on

IL-12R signaling, we stably transfected the Th1-like cell

line 2D6 with PTP-BL (FS) or (WT) expression vectors (Fig-

ure 3A). Immunoblot analysis showed no significant differ-

ences in the overall pattern or amount of tyrosine phos-

phorylation after IL-12 stimulation in each of the stable

cell lines (Figure 3B). In contrast, the amount of STAT4

phosphorylation was specifically decreased in 2D6 cells

transfected with PTP-BL (WT) as compared to those

transfected with PTP-BL (FS) after IL-12 stimulation at

each time point examined (Figure 3C). After the binding

of IL-12 to its receptor, the receptor-associated JAK ki-

nase Tyk2 becomes tyrosine phosphorylated prior to its

phosphorylation of STAT4 (Karaghiosoff et al., 2000;

Shimoda et al., 2000). Not surprisingly, treatment of 2D6

cells with a Tyk2 inhibitor was shown to result in de-

creased tyrosine phosphorylation of STAT4 (Sugimoto

et al., 2003). Thus, to assess the substrate specificity of

PTP-BL, we examined Tyk2 phosphorylation in 2D6 trans-

fectants. As shown in Figure 3D, 2D6 cells expressing

PTP-BL (WT) have comparable amounts of Tyk2 tyrosine

phosphorylation after IL-12 stimulation as that seen in

cells transfected with PTP-BL (FS). These results suggest

that PTP-BL acts to inhibit the tyrosine phosphorylation of

STAT4 directly rather than by acting at the level of Tyk2

after IL-12 stimulation.

Finally, we examined whether PTP-BL overexpression

can inhibit the expression of an endogenous STAT4-target

gene. As shown in Figure 3E, IL-12-induced IFN-g produc-

tion was markedly impaired in 2D6 cells that overexpress

PTP-BL, whereas PMA plus ionomycin-induced IFN-g

production was not affected in these cells. Taken to-

gether, these results suggest that PTP-BL acts directly

on STAT4 to inhibit STAT4-mediated signal transduction.

PTP-BL Dephosphorylates Multiple STAT

Family Members

We next examined the specificity of PTP-BL for another

STAT family member, STAT6. 293T cells were cotrans-

fected with expression vectors for FLAG-STAT6 and the

three forms of c-Myc-tagged PTP-BL as in Figure 2A.

Transfected cells were stimulated with IL-4, and total

cell lysates were immunoprecipitated with FLAG antibody

followed by immunoblot with anti-phospho STAT6. Like
Immunity 26, 163–176, February 2007 ª2007 Elsevier Inc. 165
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Figure 2. PTP-BL Dephosphorylates STAT4 through Its PTPase Domain

(A) PTP-BL impairs STAT4 phosphorylation. An expression vector for FLAG-tagged STAT4 (0.6 mg) was cotransfected into 293T cells together with

those for c-Myc-tagged PTP-BL (FS, WT, or DC) (12 mg each). Total cell lysates from cells treated with IFN-a (1000 U/ml) for 30 min were immuno-

precipitated with anti-FLAG and immunobloted with anti-phospho STAT4. Data are representative of three independent experiments.

(B) PTP-BL inhibits STAT4-mediated transactivation. An IRF-1 luciferase reporter construct (0.2 mg) and an expression vector for FLAG-tagged STAT4

(0.2 mg) were cotransfected into 293T cells together with those for c-Myc-tagged PTP-BL (FS, WT, or DC) (2.0 mg each). Cells were stimulated with

IFN-a (1000 U/ml) for 6 hr and cell lysates were subjected to luciferase assay. Data are representative of three independent experiments.

(C) Purification of GST-tagged PTPase domain of PTP-BL. HighFive insect cells were infected with recombinant baculovirus that encodes either glu-

tathoine S-transferase (GST) or GST-tagged PTPase domain of PTP-BL for 40 hr. GST-tagged proteins were prepared by affinity purification and

visualized by coomassie staining.

(D) PTP-BL can directly dephosphorylate STAT4. Phosphorylated STAT4 was immunoprecipitated with anti-FLAG from IFN-a-stimulated 293T trans-

fectants and incubated with 0.2 mg/ml recombinant proteins. Immunoprecipitates were subjected to immunoblot with anti-phospho-tyrosine (PY20).

Equal loading was verified by reprobing with anti-STAT4. Data are representative of three independent experiments.
that seen with STAT4, coexpression of FLAG-STAT6 with

PTP-BL (WT) resulted in a decreased amount of IL-4-in-

duced STAT6 tyrosine phosphorylation (Figure 4A). Simi-

lar results were obtained with STAT1, STAT3, and

STAT5 (see Figure S1 in the Supplemental Data available

online). When the effect of PTP-BL overexpression on

STAT6-mediated transactivation was assessed by lucifer-

ase assay, PTP-BL (WT) was found to inhibit IL-4-induced

STAT6-mediated reporter gene activation in a dose-

dependent manner (Figure 4B). Moreover, incubation of

activated STAT6 immunoprecipitates with recombinant
166 Immunity 26, 163–176, February 2007 ª2007 Elsevier Inc.
PTPase domain resulted in complete dephosphorylation

of STAT6 (Figure 4C). Finally, PTP-BL overexpression

had no affect on NF-kB p65-mediated transactivation

(Figure 4D). Taken together, these results demonstrate

that PTP-BL dephosphorylates multiple STAT proteins

leading to an inhibition of STAT-mediated gene activation.

Generation of PTP-BL-Deficient Mice and PTP-BL

Expression in CD4+ T Cells

To further study the functional roles of PTP-BL in regu-

lating STAT signaling, we generated PTP-BL-deficient
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Figure 3. PTP-BL Inhibits IL-12 Signaling at the Level of STAT4 Phosphorylation

(A) Overexpression of PTP-BL in 2D6 cells.

(B) The pattern of tyrosine phosphorylated proteins in 2D6 cells overexpressing PTP-BL.

(C) PTP-BL impairs IL-12-induced STAT4 phosphorylation. IL-12-starved 2D6 cell transfectants expressing c-Myc-PTP-BL (FS or WT) were stimu-

lated with IL-12 (1 ng/ml) for the indicated times. Total cell lysates were immunoblotted with anti-phospho STAT4. Data are representative of three

independent experiments.

(D) PTP-BL does not impair IL-12-induced Tyk2 phosphorylation. IL-12-starved 2D6 transfectants were stimulated with IL-12 (1 ng/ml) for 15 min.

Total cell lysates were immunoblotted with anti-phospho Tyk2. Data are representative of three independent experiments.

(E) PTP-BL overexpression impairs IL-12-induced IFN-g production. IL-12-starved 2D6 cell clones (2 3 105 cells/well) were cultured without or with

IL-12 (5 ng/ml) or PMA (50 ng/ml) plus ionomycin (1 mg/ml) in 96-well culture plates. After 24 hr, supernatants were harvested and IFN-g production

was measured by ELISA. Data are presented as mean ± SD of triplicate samples.
mice by homologous recombination in ES cells

(Figure 5A). Disruption of the gene encoding PTP-BL,

Ptpn13, was confirmed by Southern blot analysis

(Figure 5B). We confirmed the absence of Ptpn13 mRNA

by northern blot analysis of total RNA isolated from

kidneys of PTP-BL-deficient mice (Figure 5C). We also

verified the absence of PTP-BL protein in freshly

isolated PTP-BL-deficient CD4+ T cells by immunoblot

(Figure 5D). Flow cytometry revealed that PTP-BL-defi-

cient mice have normal numbers of splenic lymphocyte
Im
subsets including CD4+ T cells, CD8+ T cells, B cells,

macrophages, dendritic cells, and NK cells and a normal

ratio of CD4+/CD8+ cells in the thymus (Figure S2A). In

PTP-BL-deficient CD4+ T cells, the expression of activa-

tion markers (CD69, CD62L, and CD25) both before and

after anti-CD3 stimulation was comparable with WT

CD4+ T cells (Figure S2B). Finally, the proliferation of

PTP-BL-deficient CD4+ T cells after anti-CD3, IL-2, or

IL-4 stimulation was also no different from WT cells

(Figure S2C).
munity 26, 163–176, February 2007 ª2007 Elsevier Inc. 167
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Figure 4. PTP-BL Dephosphorylates Multiple STAT Family Members

(A) PTP-BL impairs STAT6 phosphorylation. An expression vector for FLAG-tagged STAT6 (0.6 mg) was cotransfected into 293T cells together with

those for c-Myc-tagged PTP-BL (FS, WT, or DC) (12 mg each). Total cell lysates from cells treated with IL-4 (10 ng/ml) for 30 min were immunopre-

cipitated with anti-FLAG and subjected to immunoblot with anti-phospho STAT6. Data are representative of three independent experiments.

(B) PTP-BL inhibits STAT6-mediated transactivation. A STAT6-responsive luciferase reporter construct (TPU474) (0.2 mg), and a STAT6 expression

vector (0.2 mg) were cotransfected into 293T cells together with increasing amounts (0.25, 0.5, 1.0, and 2.0 mg) of c-Myc-tagged PTP-BL expression

vectors (WT or DC). The total amount of transfected PTP-BL vector in each sample was adjusted to 2.0 mg by the addition of PTP-BL (FS). 24 hr after

transfection, cells were stimulated with IL-4 (10 ng/ml) for 6 hr and lysates were subjected to luciferase assay. Data are representative of two inde-

pendent experiments.

(C) PTP-BL can dephosphorylate STAT6 in vitro. Phosphorylated STAT6 was immunoprecipitated with anti-FLAG from IL-4-stimulated 293T trans-

fectants and incubated with 0.25 mg/ml recombinant proteins. Immunoprecipitates were probed with anti-phospho tyrosine (PY20). Equal loading was

verified by reprobing with anti-STAT6. Data are representative of two independent experiments.

(D) PTP-BL does not inhibit NF-kB-mediated transactivation. A luciferase reporter construct that contains five copies of NF-kB binding sequence

(0.2 mg) and an NF-kB p65 expression vector (0.2 mg) were cotransfected into 293T cells together with c-Myc-tagged PTP-BL expression vectors

(WT or DC). The total amount of transfected PTP-BL vector in each sample was adjusted to 2.0 mg by the addition of PTP-BL (FS). 30 hr after trans-

fection, cells were harvested and lysates were subjected to luciferase assay. Data are representative of two independent experiments.
At the subcellular level, PTP-BL expression in both Th1

and Th2 cells was observed mainly in the cytoplasm and

to a lesser extent in nuclei (Figure 5E). A similar distribution

of PTP-BL in both cytoplasm and nuclei was also seen in

the Th2 cell clone D10 and the Th1 cell clone 2D6 (data not

shown), suggesting that PTP-BL may affect the tyrosine

phosphorylation state of STAT molecules in both cellular

compartments of CD4+ T cells.
168 Immunity 26, 163–176, February 2007 ª2007 Elsevier Inc.
The Effect of PTP-BL Deficiency on STAT Activation

in CD4+ T Cells

As shown in Figures 2 and 3, PTP-BL overexpression

reduced STAT4 phosphorylation in vivo and in vitro.

Therefore, we examined the effect of IL-12 stimulation

on STAT4 phosphorylation in PTP-BL-deficient CD4+ T

cells. Because previous studies showed that IL-12R is

not expressed on resting T cells, but rather only after
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Figure 5. Generation of PTP-BL-Deficient Mice and PTP-BL Expression in CD4+ T Cells

(A) Gene targeting construct for disruption of Ptpn13. Restriction enzymes are the following: Ec, EcoRI; Xb, XbaI; Xh, XhoI.

(B) Southern blot analysis of tail DNA from wild-type (+/+), heterozygous (+/�), and PTP-BL-deficient (�/�) mice.

(C) Northern blot analysis of total RNA isolated from the kidneys of wild-type or PTP-BL-deficient mice. 18S and 28S RNAs are shown to verify equal

loading in each lane.

(D) PTP-BL expression in CD4+ T cells from wild-type and PTP-BL-deficient mice. Total cell lysates were prepared from freshly isolated CD4+ T cells

and subjected to immunoblot with anti-PTP-BL.

(E) Subcellular localization of PTP-BL. CD4+ T cells from wild-type and PTP-BL-deficient mice were differentiated under Th1 or Th2 cell conditions for

5 days. Cytoplasmic and nuclear extracts were prepared and analyzed by immunoblot with anti-PTP-BL.
TCR triggering (Nakahira et al., 2001), we stimulated CD4+

T cells purified from WT and PTP-BL-deficient mice with

anti-CD3, anti-CD28, and IL-12. TCR triggering plus IL-

12 stimulation resulted in the phosphorylation of STAT4

in both cytoplasmic and nuclear compartments of WT

CD4+ T cells (Figure 6A). In accord with the subcellular lo-

calization pattern of PTP-BL seen in Figure 5D, increased

STAT4 phosphorylation was observed in both subcellular

compartments prepared from PTP-BL-deficient CD4+ T

cells, with the nuclear compartment showing an approxi-

mately 4-fold increase in the level of STAT4 phosphoryla-

tion (Figure 6A, Figure S3A). In addition, the total level of

STAT4 protein in the nucleus was also increased in

PTP-BL-deficient CD4+ T cells after IL-12 stimulation,

consistent with its increased phosphorylation status.
Im
The balance of phosphorylation and dephosphorylation

activities determines the total amount of phosphorylated

STAT4 protein. If PTP-BL deficiency leads to an increase

in the amount of phosphorylated STAT4 protein because

of a decrease in dephosphorylation activity, we would ex-

pect to see prolonged phosphorylation of STAT4 after cy-

tokine stimulation. We evaluated this possibility by per-

forming a staurosporine chase experiment. CD4+ T cells

were stimulated with IFN-a to activate STAT4 (Nguyen

et al., 2002) and then treated with staurosporine, a protein

kinase inhibitor, to inhibit further STAT phosphorylation by

JAK kinases. Cytoplasmic and nuclear extracts were

prepared from cells harvested at various time points and

subjected to immunoblot analysis to monitor the phos-

phorylation state of STAT4. As shown in Figure 6B (left),
munity 26, 163–176, February 2007 ª2007 Elsevier Inc. 169
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Figure 6. STAT Activation Is Increased and Prolonged in PTP-BL-Deficient CD4+ T Cells

(A) STAT4 phosphorylation is increased in PTP-BL-deficient CD4+ T cells. Freshly isolated CD4+ T cells were stimulated with immobilized anti-CD3

(1 mg/ml for coating), 1 mg/ml anti-CD28, 100 U/ml human IL-2, 5 ng/ml murine IL-12, and 10 mg/ml anti-IL-4 for 15 hr. Cytoplasmic and nuclear

extracts were subjected to immunoblot as indicated. Data are representative of three independent experiments.

(B) STAT4 phosphorylation is prolonged in PTP-BL-deficient CD4+ T cells. Freshly isolated CD4+ T cells were stimulated with IFN-a (3000 U/ml) for

30 min, followed by staurosporine chase (0.5 mM) for another 15, 30, or 45 min. Cytoplasmic and nuclear extracts were subjected to immunoblot as

indicated. Data are representative of three independent experiments.

(C) Prolonged STAT6 DNA binding activity in nuclei of PTP-BL-deficient CD4+ T cells. Freshly isolated WT and PTP-BL-deficient CD4+ T cells were

stimulated with IL-4 (40 ng/ml) for 30 min, followed by staurosporine chase (0.5 mM) for another 15 or 30 min. Nuclear extracts (1.3 mg) were subjected

to EMSA with STAT6 and Sp1 consensus probes. Data are representative of two independent experiments.
STAT4 phosphorylation disappeared rapidly in the cyto-

plasmic compartment of WT cells after staurosporine

treatment, while in contrast PTP-BL-deficient cells

showed prolonged STAT4 phosphorylation even 45 min

after the addition of staurosporine. We performed a densi-

tometric analysis to quantify the amount of phosphory-

lated STAT4 protein present in the cytoplasmic compart-

ment after staurosporine treatment (Figure S3B, left). In

WT cells, the amount of phosphorylated STAT4 reached

background amounts by 45 min after the addition of staur-

osporine, whereas PTP-BL-deficient cells still retained ap-

proximately 40% of their maximum amount of phosphor-

ylated STAT4 at that time point. In the nuclei of WT cells,

STAT4 phosphorylation reached background amounts

30 min after the addition of staurosporine, whereas

STAT4 phosphorylation was at peak levels at the same

time point PTP-BL-deficient cells (Figure S3B, right). In ac-

cord with the prolonged phosphorylation of STAT4 seen in

PTP-BL-deficient nuclei, a concomitant increase in the

amount of total STAT4 protein was also observed
170 Immunity 26, 163–176, February 2007 ª2007 Elsevier Inc.
(Figure 6B). Similar results were obtained when STAT1

and STAT5 phosphorylation were examined by stauro-

sporine chase (data not shown).

We next examined whether IL-4-induced STAT6 phos-

phorylation is similarly prolonged in PTP-BL-deficient

CD4+ T cells. However, we found that nuclear STAT6

phosphorylation in freshly isolated CD4+ T cells was too

weak to detect by immunoblot analysis, and we did not

observe any difference in the amounts of STAT6 phos-

phorylation between WT and PTP-BL-deficient Th2 cells,

possibly because of the sensitivity of the antibody used

(data not shown). The DNA-binding activity of STAT pro-

teins is correlated with their amount of tyrosine phosphor-

ylation, so we assessed STAT6 DNA-binding activity in

freshly isolated WT and PTP-BL-deficient CD4+ T cells

by electrophoretic mobility shift assay (EMSA) (Figure 6C).

In WT nuclei, IL-4-induced STAT6 DNA-binding activity

vanished completely after 15 min of staurosporine chase.

In contrast, STAT6 DNA-binding activity was still main-

tained in extracts from PTP-BL-deficient cells harvested
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Figure 7. Enhanced Th1 and Th2 Cell Differentiation in PTP-BL-Deficient CD4+ T Cells

(A) Increased IFN-g and IL-4 production by PTP-BL-deficient Th and Th2 cells after secondary stimulation. CD4+ T cells isolated from WT and PTP-

BL-deficient mice were differentiated under unskewed (UNSK), Th1-, and Th2-skewing conditions for 5 days and then restimulated with plate-bound

anti-CD3. IFN-g and IL-4 production was measured by ELISA. Data are presented as mean ± SD of triplicate samples and are representative of four

independent experiments.

(B) Enhanced Th1 and Th2 cell differentiation in PTP-BL-deficient CD4+ T cells. The generation of Th1 and Th2 cells was assessed by intracellular

cytokine staining. The percentages of cells in each quadrant are shown. Data are representative of three independent experiments.

(C) Enhanced pulmonary bacterial clearance in PTP-BL-deficient mice. 48 hr after intratracheal K. pneumoniae infection (7 mice per each group),

CFU/ml lung homogenate were assessed in WT and PTP-BL-deficient mice. Data are presented as mean ± SEM.
at same time point. Taken together, these results demon-

strate that STAT phosphorylation is both increased and

prolonged in the absence of PTP-BL and further indicate

that PTP-BL is responsible for the dephosphorylation of

STAT proteins in vivo.

Increased Th1 and Th2 Differentiation

in PTP-BL-Deficient CD4+ T Cells

Because STAT4 and STAT6 have been shown to play crit-

ical roles in the differentiation of Th cells (Murphy and

Reiner, 2002), we examined the effect of PTP-BL defi-

ciency on this process. CD4+ T cells isolated from WT

and PTP-BL-deficient mice were differentiated under

unskewed (UNSK), Th1, or Th2 culture conditions in vitro.

After restimulation with anti-CD3, ELISA of culture super-

natants was performed to measure the production of
IFN-g and IL-4. Increased production of IFN-g under

Th1-skewing conditions and enhanced production of

IL-4 under Th2 culture conditions was observed in PTP-

BL-deficient CD4+ T cells as compared to WT cells (Fig-

ure 7A). We also analyzed the status of T helper cell differ-

entiation by intracellular cytokine staining, and enhanced

Th cell differentiation was confirmed in PTP-BL-deficient

CD4+ T cells (Figure 7B). Thus, PTP-BL-deficient CD4+ T

cells have an enhanced potential to develop into Th1

and Th2 cells, which can be ascribed to increased and/

or prolonged STAT4 and STAT6 activation.

Effect of PTP-BL Deficiency on Lung Host Defense

During K. pneumoniae pneumonia, interrupting T cell cyto-

kine signaling impairs host defenses (Deng et al., 2004),

while increasing T cell cytokine production improves
Immunity 26, 163–176, February 2007 ª2007 Elsevier Inc. 171
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bacterial killing (Ruan et al., 2006). Because PTP-BL-defi-

cient T cells demonstrated increased activities including

cytokine elaboration, we tested whether PTP-BL defi-

ciency could improve host defense against K. pneumo-

niae in the lungs. Bacteria multiplied in the lungs over

the 2 day time period, as in prior studies (Deng et al.,

2004; Ruan et al., 2006), but wild-type mice had 35-fold

more living bacteria in their lungs than did PTP-BL-

deficient mice (Figure 7C). These data suggest that

PTP-BL deficiency results in improved host defense

against intrapulmonary K. pneumoniae.

DISCUSSION

The STAT signaling pathway is negatively regulated by

several diverse groups of molecules including families of

SOCS, PIAS, and PTP proteins (Shuai and Liu, 2003). Be-

cause tyrosine phosphorylation of STAT proteins is known

to be critical for their functional activity, regulating dimer-

ization, nuclear translocation, nuclear retention, DNA

binding, and transactivation, PTP have been implicated

as particularly important molecules for the efficient atten-

uation of STAT signaling (Andrews et al., 2002; Shuai et al.,

1996). To date, it has been shown that TC-PTP and SHP-2

act on STAT1-STAT5 and STAT1-STAT3, respectively

(Chen et al., 2003; Chughtai et al., 2002; Meyer et al.,

2003; ten Hoeve et al., 2002; Wu et al., 2002), but PTP re-

sponsible for the dephosphorylation of STAT2, STAT4,

and STAT6 have not yet been identified.

In the present study, we have identified PTP-BL as

a PTP that acts on multiple STAT proteins. Specifically,

we demonstrated that PTP-BL and STAT4 physically in-

teract and that several STAT proteins are substrates for

the tyrosine dephosphorylation activity of PTP-BL. Fur-

thermore, STAT4 and STAT6 phosphorylation is increased

and prolonged in the cytoplasm and nuclei of PTP-BL-

deficient CD4+ T cells, and this correlates with increased

amounts of Th cell differentiation and subsequent cyto-

kine production. We conclude that PTP-BL is a physiolog-

ically important negative regulator of the STAT signaling

pathway.

PTP-BL, and its human homolog PTP-BAS, are known

to possess at least seven potential protein-protein inter-

action domains including a kinase noncatalytic C-lobe

(KIND) domain, a Four-point-one-Ezrin-Radixin-Moesin

(FERM) domain, and five PSD-95-Drosophila discs

large-Zonula occludens (PDZ) domains, and many poten-

tial interacting proteins have been identified (Erdmann,

2003). In addition to these seven interaction domains,

PTP-BL also contains a leucine zipper (LZ) domain in the

N terminus of the molecule (Chida et al., 1995), and be-

cause PTP-BL was isolated from a yeast two-hybrid

screening with the LZ motif of STAT4 as a bait, it is possi-

ble that these domains may be important in mediating the

interaction of PTP-BL and STAT proteins.

Several proteins have been reported to be potential

substrates for the enzymatic activity of PTP-BL. In cell

lines transfected with PTP-BL expression vectors, or

in vitro PTPase assays with recombinant PTP domain,
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RIL (Cuppen et al., 1998), b-Catenin (Erdmann et al.,

2000), c-Src (Palmer et al., 2002), IkBa (Nakai et al.,

2000), and EphirinB (Palmer et al., 2002) were shown to

be capable of being dephosphorylated. However, the

functional significance of PTP-BL-induced dephosphory-

lation of any of these targets has not clearly been estab-

lished. In this study, we showed that STAT proteins are

direct substrates of PTP-BL, and, by using PTP-BL-

deficient CD4+ T cells, we further demonstrated that

PTP-BL serves as a physiologically important regulator

STAT-mediated responses such as those leading to the

differentiation of Th cells.

In correlation with the subcellular localization pattern of

PTP-BL, the inhibitory effect of PTP-BL on STAT phos-

phorylation was evident in both cytoplasmic and nuclear

fractions. This result indicates that PTP-BL can act as

both a cytoplasmic and nuclear STAT PTP, as is the

case with some other recently identified PTP. For exam-

ple, prolonged phosphorylation of STAT5 was observed

in the cytoplasm of Shp-2-deficient cells, and SHP-2 has

also been shown to be involved in the dephosphorylation

of STAT1 in the nucleus (Chen et al., 2003; Chughtai et al.,

2002; Wu et al., 2002). In contrast, TC-PTP appears to act

as a nuclear PTP to inactivate STAT1 and STAT3 (Meyer

et al., 2003; ten Hoeve et al., 2002), while PTP1B has

been implicated as a cytoplasmic PTP, acting on STAT5

(Aoki and Matsuda, 2000). Taken together with previous

work on Tc-ptp- and Shp-2-deficient cells, our present

study on PTP-BL demonstrates that PTP plays a signifi-

cant role in attenuating STAT signaling.

A number of diverse functions have been ascribed to

PTP-BL, given the varied proteins that it has been shown

to interact with. For example, PTP-BL has been suggested

to act as a scaffolding protein in the regulation of the cyto-

skeleton (Erdmann, 2003), to confer resistance to FAS-

induced cell death (Ivanov et al., 2003; Sato et al., 1995),

to dephosphorylate EphrinB and thus regulate various

developmental processes (Palmer et al., 2002), and to

be involved in the regulation of cytokinesis (Herrmann

et al., 2003). Recently, independent reports on the charac-

terization of PTP-BL-deficient mice revealed a phenotype

of impairment in motor nerve repair (Wansink et al., 2004)

and the involvement of PTP-BL in both retinal ganglion cell

neurite initiation and survival of activated retinal glia

(Lorber et al., 2005).

In this study, we have demonstrated that PTP-BL is

a physiologically important phosphatase for STAT pro-

teins; overexpression of PTP-BL leads to an attenuation

of STAT signaling, while PTP-BL deficiency results in in-

creased and prolonged STAT phosphorylation. Although

PTP-BL appears to act on multiple STAT family members,

it is the first tyrosine phosphatase to be shown to effec-

tively dephosphorylate STAT4 and STAT6 in particular.

To date, several molecules that impinge on the JAK-

STAT signaling pathway and result in a perturbation in

Th1 and Th2 cell differentiation have been identified. For

example, analysis of SOCS1-deficient mice has revealed

that SOCS-1 can modulate Th1 and Th2 cell development

and IFN-g and IL-4 production (Fujimoto et al., 2002).
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In addition, heterozygous motheaten (me/�) mice, which

express decreased amounts of SHP-1, show increased

generation of Th2 cells as well as elevated STAT6 phos-

phorylation (Kamata et al., 2003). However, the targets

of SOCS1 and SHP-1 are JAK kinases and there little is

known about the regulation of the lineage decision of

CD4+ T cells at the level of STAT proteins. Here we have

shown that increased and prolonged STAT phosphoryla-

tion after cytokine stimulation correlates with increased

production of two hallmark cytokines, IFN-g and IL-4, in

PTP-BL-deficient CD4+ T cells, suggesting that PTP-BL

negatively regulates Th cell differentiation by inactivating

STAT4 and STAT6.

EXPERIMENTAL PROCEDURES

Yeast Two-Hybrid Screening

The leucine zipper bait was generated by subcloning a portion of the

murine STAT4 cDNA encoding amino acids 250–310 in-frame into

pEG202 (Clontech). Yeast strain EGY48 was sequentially transformed

with bait construct, pSH17 reporter plasmid (Clontech), and pJG4-5

(Clontech) expression vector containing a cDNA library from a mouse

Th1 cell clone stimulated with anti-CD3 for 5 hr. Positive colonies were

screened on dropout and X-gal plates and subjected to sequencing

analysis.

Plasmid Constructs and Reagents

FLAG-tagged murine STAT1, STAT4 (WT and Y693F), and STAT6 were

cloned into pcDNA3 (Invitrogen). c-Myc tagged PTP-BL (WT, FS, CS,

and DC) were generated in pCMV-Myc (Clontech). The frame-shift

(FS) mutant was prepared by digestion of the 5-prime region of the

PTP-BL cDNA with NsiI followed by self-ligation to induce a frame-shift

in the reading frame. The 23 IRF-1 luciferase reporter and STAT6-re-

sponsive reporter constructs were gifts from T. Hoey. The NF-kB lucif-

erase reporter construct and NF-kB p65 expression vector were gifts

from L. Glimcher. Anti-phospho STAT4 (71-7900; Zymed Laboratory),

anti-phospho STAT6 (#9361; Cell Signaling Technology), anti-phospho

STAT1 (#9171; Cell Signaling Technology), anti-STAT6 (M-20) (sc-981;

Santa Cruz Biotechnology), anti-STAT4 (C-20) (sc-486; Santa Cruz Bio-

technology), anti-phospho STAT5 (#9351; Cell Signaling Technology),

anti-STAT5 (C-17) (sc-835; Santa Cruz Biotechnology), anti-STAT1

p84/p91 (E-23) (sc-346; Santa Cruz Biotechnology), anti-phospho

STAT3 (#9131, Cell Signaling Technology), anti-STAT3 (C-20) (sc-

482; Santa Cruz Biotechnology), anti-phospho Tyk2 (Tyr 1054/1055)

(#9321; Cell Signaling Technology), anti-Tyk2 (C-20) (sc-169; Santa

Cruz Biotechnology), anti-Sp1 (PEP2) (sc-59; Santa Cruz Biotechnol-

ogy), anti-HSP90 (H-114) (sc-7947; Santa Cruz Biotechnology), anti-

c-Myc (9E10) (sc-40; Santa Cruz Biotechnology), anti-FLAG M2 aga-

rose beads (A2220; Sigma), anti-phospho tyrosine antibody (PY20)

(P11120; BD Transduction Laboratories), HRP-rabbit anti-mouse IgG

(H+L) (61-6520; Zymed), and HRP-goat anti-rabbit IgG (H+L) (81-

6120; Zymed) were purchased from the indicated companies. Anti-

PTP-BL anti-serum was a gift from K. Erdmann. Staurosporine was pur-

chased from Calbiochem (#569396). For the detection of immunoblots,

Immun-Star HRP substrate kit (170-5040; BIO-RAD) or ECL western

blotting detection reagent (RPN2106; Amersham) were used.

Cell Culture

293T cells were maintained in DMEM supplemented with 10% FCS.

2D6 cells were maintained in RPMI supplemented with 10% FCS in

the presence of 500 pg/ml mouse IL-12.

Transient Transfections and Reporter Assays

Transfections for 293T cells were done with Effectene (301427; Qia-

gen). Luciferase assays were performed according to the manufac-

turer’s protocol (Promega).
Im
Generation of 2D6 Stable Transformants

Five million 2D6 cells were transfected with linearized pCMV-Myc-

PTP-BL (3.5 mg) along with linearized pcDNA3 empty vector (0.5 mg).

For transfection, Amaxa nuclofector II module (Amaxa biosystems)

was used together with Cell Line Nucleofector kit V (VCA-1003; Amaxa

biosystems) under the control of program X-001. Single cell clones

were isolated after selection in the presence of 1 mg/ml Geneticin

(118111-031; GIBCO) for 2 weeks.

Baculovirus Expression and Purification of GST-Tagged Protein

BAC-TO-BAC Baculovirus Expression System (Invitrogen) was used to

generate recombinant baculovirus according to the manufacturer’s

protocol. In brief, glutathione S-transferase (GST) protein and GST-

tagged PTPase domain were cloned into pFASTBAC1 donor plasmid.

The recombinant plasmids were transformed into bacmid-carrying

E. coli strain (DH10BAC) to obtain the recombinant bacmids by

transposition in E. coli. The resultant recombinant bacmids were

transfected into Sf9 insect cells to get the recombinant baculovirus.

Recombinant proteins were purified from HighFive cells (Invitrogen)

with GST bind resin (70541-3; Novagen). When lysates were prepared

from HighFive cells, a 33 higher amount of Complete Mini protease

inhibitor cocktail (#11836153001; Roche) than usual was used, along

with 1 mM phenylmethylsulfonyl fluoride (PMSF).

PTPase Assay

In vitro PTPase assay was performed essentially as described

(Erdmann et al., 2000). In brief, phosphorylated FLAG-tagged STAT4

or FLAG-tagged STAT6 were immunoprecipitated from IFN-a- or

IL-4- stimulated 293T transfectants, respectively. Immunoprecipitates

were incubated with GST-tagged proteins in 25 mM HEPES (pH 7.5),

5 mM EDTA, 10 mM DTT at 37�C for 3 hr and subjected to immunoblot

with anti-phospho-tyrosine (PY20).

Immunoprecipitation and Immunoblot Analysis

Total cell lysates (TCLs) were prepared by lysing cells in 23 lysis buffer

(50 mM Tris-HCL [pH 8.0], 300 mM NaCl, 1% TritonX-100, 2 mM

Na3VO4, 20 mM NaF) supplemented with Complete Mini protease

inhibitor cocktail. For immunoprecipitation, TCLs in 13 lysis buffer

were incubated with Protein A/G agarose beads (sc-2003; Santa

Cruz Biotechnology) conjugated with antibodies as indicated and sub-

jected to SDS-PAGE followed by immunoblot analysis. For coimmuno-

precipitation studies, 250 mM NaCl was used.

Generation of PTP-BL-Deficient Mice

Murine Ptpn13 was isolated from a C57BL/6 genomic library. To dis-

rupt Ptpn13, we constructed a targeting vector in which the neomycin

resistance gene cassette was inserted into the exon encoding amino

acids 452–526. The targeting vector was electroporated into C57BL/

6 ES cells, followed by G418 selection. Colonies containing the disrup-

ted allele were identified by Southern blot analysis. Targeted ES cell

clones were injected into C57BL/6 blastocysts and implanted into

pseudopregnant females to obtain chimeric mice that were then

bred for germline transmission. All experiments were performed

according to the guidelines of the Harvard Medical Area Standing

Committee on Animals.

Preparation of Cytoplasmic and Nuclear Extracts

Cytoplasmic and nuclear extracts were prepared with hypotonic buffer

(20 mM HEPES-NaOH [pH 7.9], 10 mM KCl, 0.1 mM EGTA, 2 mM

MgCl2, 1 mM Na3VO4, 20 mM NaF, 0.1% Nonidet P-40, 1 mM DTT)

and hypertonic buffer (20 mM HEPES-NaOH [pH 7.9], 0.1 mM EGTA,

2 mM MgCl2, 1 mM Na3VO4, 20 mM NaF, 420 mM NaCl, 20% glycerol,

1 mM DTT), respectively. These buffers were supplemented with pro-

teinase inhibitor cocktail.

EMSA

Binding reaction was performed in a total volume of 20 ml in the follow-

ing buffer: 20 mM HEPES-NaOH (pH 7.9), 5 mM MgCl2, 50 mM KCl,
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1 mM DTT, and 6% glycerol. Each reaction, also containing 2 mg of

poly (dI-dC) and 32P end-labeled probe (60,000 cpm/reaction), was

initiated by the addition of 1.3 mg nuclear extract and was allowed to

incubate at room temperature for 30 min before electrophoretic anal-

ysis on a 4% native PAGE in 0.53 Tris-borate-EDTA (TBE) buffer.

The STAT5/6 consensus oligonucleotide probe (50-GTATTTCCCA

GAAAAGGAAC-30; sc-2567) and Sp1 consensus oligonucleotide

probe (50-ATTCGATCGGGGCGGGGCGAGC-30; sc-2502) were pur-

chased from Santa Cruz Biotechnology.

In Vitro Th Cell Differentiation

Murine CD4+ T cells were isolated by MACS (Miltenyi Biotec) and stim-

ulated for 4 days with immobilized anti-CD3 (1 mg/ml for coating) in the

presence of 1 mg/ml anti-CD28 (37.51; BD Pharmingen) and 100 U/ml

human IL-2. For Th1 cell differentiation, murine IL-12 (5 ng/ml) and anti-

IL-4 (10 mg/ml) were added to the culture media, and for Th2 cell differ-

entiation, murine IL-4 (10 ng/ml) was added. The cells were cultured

with just cytokines for another day, harvested, washed, and restimu-

lated with immobilized anti-CD3 (0.2 mg/ml for coating). After 24 hr, cul-

ture supernatants were harvested for ELISA measurement of cytokine

production.

Intracellular Cytokine Staining

Th1- or Th2-polarlized CD4+ T cells were obtained as described above

and restimulated with immobilized anti-CD3 (5 mg/ml for coating) for

5.5 hr in the presence of 3 nM Monensin (Sigma) for the last 2.5 hr.

These cells were stained with PE-labeled anti-mouse IL-4 (#554435;

BD Pharmingen), FITC-labeled anti-mouse IFN-g (#554411; BD

Pharmingen) and their isotype controls. Flow cytometric analysis

was performed on a FACSCalibur (Becton Dickinson), and live cells

were gated based on FSC and SSC profiles.

Bacterial Pneumonia

Mice (7-week-old C57BL/6 males) were infected by intratracheal instil-

lation as previously described (Jones et al., 2005). After anesthesia by

ketamine (50 mg/kg) and xylazine (5 mg/kg) i.p., trachea were surgi-

cally exposed and an angiocatheter was placed in the left bronchus,

through which mice received 50 ml of 4 3 104 colony-forming units

(CFU)/ml Klebsiella pneumoniae (43816 from the American Type Cul-

ture Collection; Manassas, VA). After 48 hr, mice were euthanized

with an overdose of halothane. Lungs were homogenized in 10 ml ster-

ile water, serially diluted, and plated on agar for overnight growth at

37�C. Bacterial burdens were expressed as CFU/ml lung homogenate.

Densiometric Analysis

Immunoblot signals were quantified with ImageJ (http://rsb.info.nih.

gov/ij).

Supplemental Data

Three Supplemental Figures can be found with this article online at

http://www.immunity.com/cgi/content/full/26/2/163/DC1/.
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