3,086 research outputs found

    Phase Control and Fast Start-Up of a Magnetron Using Modulation of an Addressable Faceted Cathode

    Get PDF
    The use of an addressable, faceted cathode has been proposed as a method of modulating current injection in a magnetron to improve performance and control phase. To implement the controllable electron emission, five-sided and ten-sided faceted planar cathodes employing gated field emitters are considered as these emitters could be fabricated on flat substrates. For demonstration, the conformal finite-difference time-domain particle-in-cell simulation, as implemented in VORPAL, has been used to model a ten-cavity, rising sun magnetron using the modulated current sources and benchmarked against a typical continuous current source. For the modulated, ten-sided faceted cathode case, the electrons are injected from three emitter elements on each of the ten facets. Each emitter is turned ON and OFF in sequence at the oscillating frequency with five emitters ON at one time to drive the five electron spokes of the π-mode. The emitter duty cycle is then 1/6th the Radio-Frequency (RF) period. Simulations show a fast start-up time as low as 35 ns for the modulated case compared to 100 ns for the continuous current cases. Analysis of the RF phase using the electron spoke locations and the RF magnetic field components shows that the phase is controlled for the modulated case while it is random, as typical, for the continuous current case. Active phase control during oscillation was demonstrated by shifting the phase of the electron injection 180° after oscillations started. The 180° phase shift time was approximately 25 RF cycles

    High Temperature Ferromagnetism with Giant Magnetic Moment in Transparent Co-doped SnO2-d

    Get PDF
    Occurrence of room temperature ferromagnetism is demonstrated in pulsed laser deposited thin films of Sn1-xCoxO2-d (x<0.3). Interestingly, films of Sn0.95Co0.05O2-d grown on R-plane sapphire not only exhibit ferromagnetism with a Curie temperature close to 650 K, but also a giant magnetic moment of about 7 Bohr-Magneton/Co, not yet reported in any diluted magnetic semiconductor system. The films are semiconducting and optically highly transparent.Comment: 12 pages, 4 figure

    Development of a chromium-thoria alloy

    Get PDF
    Low temperature ductility and high temperature strength of pure chromium and chromium-thoria alloy prepared from vapor deposited powder

    Using apparent activation energy as a reactivity criterion for biomass pyrolysis

    Get PDF
    The reactivity of chemically isolated lignocellulosic blocks, namely, α-cellulose, holocellulose, and lignin, has been rationalized on the basis of the dependence of the effective activation energy (Eα) upon conversion (α) determined via the popular isoconversional kinetic analysis, Friedman’s method. First of all, a detailed procedure for the thermogravimetric data preparation, kinetic calculation, and uncertainty estimation was implemented. Resulting Eα dependencies obtained for the slow pyrolysis of the extractive-free Eucalyptus grandis isolated α-cellulose and holocellulose remained constant for 0.05 < α < 0.80 and equal to 173 ± 10, 208 ± 11, and 197 ± 118 kJ/mol, thus confirming the single-step nature of pyrolysis. On the other hand, large and significant variations in Eα with α from 174 ± 10 to 322 ± 11 kJ/mol in the region of 0.05 and 0.79 were obtained for the Klason lignin and reported for the first time. The non-monotonic nature of weight loss at low and high conversions had a direct consequence on the confidence levels of Eα. The new experimental and calculation guidelines applied led to more accurate estimates of Eα values than those reported earlier. The increasing Eα dependency trend confirms that lignin is converted into a thermally more stable carbonaceous material

    The European Union, borders and conflict transformation: the case of Cyprus

    Get PDF
    Much of the existing literature on the European Union (EU), conflict transformation and border dynamics has been premised on the assumption that the nature of the border determines EU intervention and the consequences that flow from this in terms of EU impact. The article aims to transcend this literature through assessing how domestic interpretations influence EU border transformation in conflict situations, taking Cyprus as a case study. Moreover, the objective is to fuse the literature on EU bordering impact and perceptions of the EU’s normative projection in conflict resolution. Pursuing this line of inquiry is an attempt to depart from the notion of borders being constructed solely by unidirectional EU logics of engagement or bordering practices to a conceptualization of the border as co-constituted space, where the interpretations of the EU’s normative projections by conflict parties, and the strategies that they pursue, can determine the relative openness of the EU border

    Grain Boundary Induced Magneto-Far Infrared Resonances in Superconducting YBa2_2Cu3_3O7δ_{7-\delta } Thin Films

    Full text link
    Spectral features induced by 45^{\circ } in-plane misoriented grains have been observed in the far infrared magneto-transmission of YBa2_2Cu3_3O7δ% _{7-\delta } thin films. Two strong dispersive features are found at 80 and 160 cm1cm^{-1} and a weaker one at 116 cm1cm^{-1}. The data can be well represented by Lorentzian oscillator contributions to the conductivity. Several possible interpretations are discussed. We conclude that the resonances are due to vortex core excitations.Comment: Latex file (14 pages) + 4 Postscript figures, uuencode

    Assessing Phytoplankton Nutritional Status and Potential Impact of Wet Deposition in Seasonally Oligotrophic Waters of the Mid-Atlantic Bight

    Get PDF
    To assess phytoplankton nutritional status in seasonally oligotrophic waters of the southern Mid-Atlantic Bight, and the potential for rain to stimulate primary production in this region during summer, shipboard bioassay experiments were performed using natural seawater and phytoplankton collected north and south of the Gulf Stream. Bioassay treatments comprised iron, nitrate, iron + nitrate, iron + nitrate + phosphate, and rainwater. Phytoplankton growth was inferred from changes in chlorophyll a, inorganic nitrogen, and carbon-13 uptake, relative to unamended control treatments. Results indicated the greatest growth stimulation by iron + nitrate + phosphate, intermediate growth stimulation by rainwater, modest growth stimulation by nitrate and iron + nitrate, and no growth stimulation by iron. Based on these data and analysis of seawater and atmospheric samples, nitrogen was the proximate limiting nutrient, with a secondary limitation imposed by phosphorus. Our results imply that summer rain events increase new production in these waters by contributing nitrogen and phosphorus, with the availability of the latter setting the upper limit on rain-stimulated new production. Plain Language Summary Human activities have substantially increased the atmospheric loading and deposition of biologically available nitrogen, an essential nutrient, to the surface ocean. Such atmospheric inputs to the ocean will likely impact on oceanic primary production by phytoplankton, and thus the marine ecosystem and ocean carbon cycling, although the scale and spatial distribution of such impacts are not well known. In this study, we used shipboard experiments, observations, and laboratory measurements to assess the potential impacts of atmospheric nitrogen deposition in rainfall on oceanic waters of the Mid-Atlantic Bight, off the U.S. eastern seaboard, during the summer. We find that the growth of phytoplankton in these waters is limited by the availability of nitrogen during summer, such that nitrogen added to the ocean by summer rain events can considerably stimulate phytoplankton primary production. However, the biological impact of these rainwater nitrogen inputs appears to be limited by the availability of another essential nutrient, phosphorus, which is present at relatively low concentrations in rainwater. This is the first study to directly examine the nutritional status of phytoplankton in relation to the impacts of rainwater nitrogen addition on primary production in oceanic waters off the U.S. East Coast
    corecore