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Occurrence of room temperature ferromagnetism is demonstrated in pulsed laser 

deposited thin films of Sn1-xCoxO2-δ (x<0.3). Interestingly, films of Sn0.95Co0.05O2-δ grown 

on R-plane sapphire not only exhibit ferromagnetism with a Curie temperature close to 

650 K, but also a giant magnetic moment of 7 ± 0.5 µB/Co, not yet reported in any diluted 

magnetic semiconductor system. The films are semiconducting and optically highly 

transparent.  
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 Integrating spin functionality into otherwise non-magnetic condensed matter 

systems has become a highly desirable goal in the context of the rapidly developing field 

of spintronics [1-5]. The ability to modulate the electrical and optical properties of 

systems by spin control not only lends itself to the development of innovative 

applications, but is also of significant interest from the fundamental standpoint of 

structure-chemistry-property relationships in solids. 

One of the apparently straightforward means of introducing spin effects in non-

magnetic solids is to introduce magnetically active dopants such as transition elements 

into the matrices and hope that they not only remain magnetically active but also couple 

with the electronic states of the solid. Considerable success has been achieved in inducing 

ferromagnetism by transition element doping in compound semiconductor systems [1-4] 

although the Curie temperatures are much lower than room temperature. In the case of 

the oxide systems, the efforts as well as successes in this context are still relatively 

limited [6-11] in spite of the fact that many strongly correlated oxides provide interesting 

grounds for a complex interplay of charge, spin and orbitals. Early attempts at the 

synthesis of diluted magnetic semiconductor (DMS) oxides used ZnO as the host and 

yielded mixed results [6-8]. A rather strong indication of favorable results was 

subsequently obtained in the substrate-stabilized anatase film phase of Co doped TiO2 

system [9,10]. Questions regarding the precise state of cobalt and local microstate of the 

host are however still being sorted out [11]. 

 In this work we use SnO2 as the host matrix in view of its already well 

documented interesting optical and electrical properties. This material has widespread 

applicability [12-15] in fields such as gas sensing (even for flammable and toxic gases), 

 3



transparent conducting electrodes in flat-panel displays and solar cells, IR detectors, 

optoelectronic devices etc. It also has superior chemical stability in comparison with 

other wide gap semiconductors [16]. While most DMS systems studied so far are hole 

doped, SnO2 has an n-type conduction [17]. For spintronic device application electron-

doped magnetic semiconductors are essential. This system, which configures in rutile 

phase, has been recently explored with Mn doping but no ferromagnetism has been 

reported [18]. By doping this material with cobalt we show that this system in its pulsed 

laser deposited thin film form leads to high temperature ferromagnetism with a Curie 

temperature as high as 650 K, while still retaining its highly desirable optical 

transparency and semiconductivity. Remarkably, at low dopant concentration, a giant 

magnetic moment of 7 ± 0.5 µB/Co is also observed, which has not been seen in any 

DMS system so far. 

 The ceramic targets used for pulsed laser ablation were prepared by standard solid 

state reaction technique. The depositions were performed at a substrate temperature of 

700 oC and oxygen partial pressure of 1 x 10-4 Torr. The laser energy density and pulse 

repetition rate were kept at 1.8 J/cm2 and 10 Hz, respectively. The samples were cooled 

in the same pressure as used during the deposition, at the rate of 20 °C/min. It was found 

that the cobalt content in the film is considerably higher than that in the corresponding 

target, possibly due to partial evaporation of low melting point material Sn from the 

growth front. The compositions quoted for the films are therefore the actual 

concentrations in the film obtained by Rutherford backscattering spectroscopy (RBS). 

The films were characterized by x-ray diffraction (XRD), scanning transmission electron 
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microscopy (STEM), SQUID and VSM magnetometries, transport and optical 

measurements, and ion channeling. 

 Fig. 1 (a) shows XRD pattern for a Sn0.95Co0.05O2-δ thin film grown on  R-plane 

sapphire substrate. Only the (101) family of rutile phase film peaks is seen, as expected. 

The rocking curve (inset) full width at half maximum of 0.23o signifies excellent 

orientational quality. Interestingly, similar good XRD signatures were obtained even for 

films with cobalt concentrations as high as 30% (x=0.3). A decrease in the XRD peak 

intensity was encountered only for further increase in the cobalt content, as shown in Fig. 

1 (b). Shown in the inset of Fig. 1(b) is a high resolution STEM image for a 

Sn0.73Co0.27O2-δ film, indicating that even up to such high cobalt concentration the film 

microstructure is uniform. Indeed, in Fig. 1 (c) we show the EELS data recorded at 

various points spread over the TEM image domain in order to establish the chemical 

uniformity. One can clearly see that cobalt is distributed uniformly in the film. 

 RBS ion channeling data recorded for cobalt lattice location (not shown) 

exhibited a fairly good channeling for Sn, but hardly any channeling for Co. Since the 

TEM data do not show any indication of clustering of the dopant, the lack of channeling 

of cobalt implies either its interstitial nature or symmetry along a different axis or 

substitutionality with local distortions in the site leading to an incoherent distribution 

[19]. The incoherency could arise due to the oxygen vacancies in the proximity of the 

dopant presumably formed to account for its lower valence as compared to Sn. Since the 

vacancies may form in any of the neighboring oxygen sites, different cobalt atoms could 

be displaced randomly along different directions. 

 5



 In Fig. 2 (a) we show magnetic hysterisis loops at room temperature for 

Sn0.95Co0.05O2-δ and Sn0.73Co0.27O2-δ films. A well defined hysterisis loop with (coercivity 

~50 Oe) is seen in each case. Remarkably, for the case of the Sn0.95Co0.05O2-δ film a giant 

magnetic moment as high as 7 ± 0.5 µB/Co is observed, and it is seen to drop rapidly with 

increase in the cobalt content, as shown in the inset. To our knowledge no such giant 

moment has ever been reported in any DMS system. Giant moments have been observed 

earlier in transition metal doped palladium and alkali metal systems [20-26], and have 

been a subject of interesting scientific analyses and debate for many years. Realization of 

such large moment in an optical material could be useful from the applications 

standpoint. We will return to the possible origin of such a giant moment and its 

concentration dependence. 

 In Fig. 2 (b) we show the magnetization as a function of temperature for the 

Sn0.95Co0.05O2-δ film measured from 4.2 K to 300 K using SQUID and from 300 K to 700 

K using VSM. The magnetization is seen to be fairly constant up to about 475 K, and 

begins to drop thereafter leading to a Curie temperature close to 650 K. Interestingly, 

after the sample was cooled to room temperature, the magnetic moment was seen to have 

dropped by a factor of about 3. It can thus be inferred that the state of the as-grown film 

with a giant moment is a metastable one. In the inset of Fig. 2(b) we show the 

magnetization data for the Sn0.92Co0.08O2-δ sample in the high temperature region. As 

compared to the case of the x=0.05 Co-doped sample, this x=0.08 Co-doped sample has a 

broader tail with non-zero moment extending above 650 K, the possible origin of which 

will be discussed later. 
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 In Fig. 3 we compare the optical conductivity for the undoped SnO2-δ and 

Sn0.73Co0.27O2-δ films. The transparency in the gap region (ω < 3.8 eV) is seen to be 

virtually unaffected even up to such high cobalt concentrations. This is illustrated in the 

inset to Fig. 3. In addition there is no evidence for impurity levels in the gap as might be 

expected from the partially filled d-states in cobalt. The absorption edge is seen to shift to 

higher wavelength (lower energy) for cobalt doped sample, indicating matrix 

incorporation of cobalt atoms. Such shifts are known to occur in DMS systems and 

depend on the particular host and dopant concentration [27-28]. Further work to explore 

these aspects experimentally and theoretically is now in progress. 

 In Fig. 4 (a) we compare the transport properties of the undoped and Co-doped 

SnO2-δ films. While the room temperature resistivity for the undoped film under specified 

growth conditions is 0.03 Ω-cm, it jumps to about 0.4 Ω-cm upon x=0.05 cobalt doping. 

In films with x=0.15 and x=0.27 cobalt, the room temperature resistivity is about 200 and 

4000 Ω-cm, respectively. The Sn0.95Co0.05O2-δ film shows a rapid increase in resistivity 

below about 10 K, possibly due to trapping of the carriers into shallow impurity related 

traps. This low temperature resistivity behavior also has interesting manifestations in the 

magnetoresistance (MR = (ρH-ρ0)/ρ0 x 100%, ρ0 and ρH being the resistivity without and 

with field H).  

 In Fig. 4 (b) we show the MR as a function of field up to 14 tesla for the 

Sn0.95Co0.05O2-δ film at 4, 10 and 20 K. One can see that the MR is strong and positive at 

4 K, while relatively weak and negative at 20 K. At 10 K it shows a non-monotonic field 

dependence. The positive MR at very low temperature which corresponds to carrier 

trapping and excitation regime from the shallow traps implies Zeeman splitting of these 
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states due to their strong coupling to the moment of cobalt causing the deepening of the 

traps. Such shallow states may originate in oxygen vacancies and their coupling to cobalt 

moment may occur because of the need of the cobalt atom to have a nearby oxygen 

vacancy for satisfying its lower valence compared to that of Sn which is 4+. 

 It is now useful to make a few remarks on the giant (7 ± 0.5 µB/Co) magnetic 

moment observed in the Sn0.95Co0.05O2-δ film in the as-grown state. This value of the 

moment is much larger than the value of about 1.67 µB/Co for the case of cobalt metal, or 

that for small cobalt clusters for which a moment of about 2.1 µB/Co is possible [29,30], 

or that of any of the standard cobalt oxides wherein the orbital moment is quenched. One 

possibility is that the atoms surrounding the cobalt atoms have acquired a moment 

through electronic effects, or the orbital moment of cobalt remains unquenched. Magnetic 

moments significantly larger (about 6-16 µB/atom) than the spin-only-moments have 

indeed been reported in transition metal atoms doped in or spread on the surfaces of 

alkali metal solids such as Cs [20-26], and these have been attributed to the unquenched 

orbital contributions. In such cases, increase in the concentration of dopants has been 

found to cause a rapid decrease in the moment (as observed in our sample) due to 

enhanced dopant-dopant associations leading to progressive orbital moment quenching. 

The decreased moment observed in our higher Co-doped samples, and the drop in the 

moment after a high temperature treatment in low Co-doped sample, possibly caused by 

enhanced associations, suggest that the scenario may be similar in our case. The tail 

extending beyond 650 K in the temperature dependence of magnetization for the x=0.08 

Co-doped sample also suggests increased dopant association. A clear understanding of 

these issues will require further work. 
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 In conclusion, thin films of Sn0.95Co0.05O2-δ grown by pulsed laser deposition on 

single crystal sapphire substrates are seen to be ferromagnetic, with a Curie temperature 

close to 650 K and a giant magnetic moment of 7 ± 0.5 µB/Co. Such a giant moment 

suggests that either the cobalt orbital moment is not quenched or some moment appears 

on the neighbors of cobalt in the matrix. The films are highly transparent and 

semiconducting. Films with higher cobalt content (up to ~ x=0.30) are also ferromagnetic 

and transparent, but are highly resistive and have a much lower magnetic moment. No 

cobalt clustering is observed in high resolution scanning transmission electron 

microscopy, but cobalt is found to be occupying a sublattice with a different axis of 

symmetry or possibly in an incoherent lattice configuration. 

This work is supported by DARPA SpinS program and by NSF-DMR-MRSEC 

and NSF-ECS-EPDT. The authors like to thank Chris Lobb and Steven Anlage for 

critical reading of the manuscript. 
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Figure Captions : 

Fig. 1 (a) X-ray diffraction (XRD) pattern for a Sn0.95Co0.05O2-δ thin film grown on  

R-plane sapphire substrate. The inset shows the rocking curve; (b) Normalized (101) 

XRD peak intensity as a function of the cobalt content. The inset shows a high 

resolution STEM image for a Sn0.73Co0.27O2-δ film; (c) Electron Energy Loss Spectra 

(EELS) recorded at various points spread over the TEM image domain of the image 

shown in (b). The spectra show the Sn-M, O-K and Co-L edges. They are shifted on 

the y-scale for clarity. 

 

Fig. 2 (a) Magnetic hysterisis loops for Sn0.95Co0.05O2-δ and Sn0.73Co0.27O2-δ films at 

300 K. Inset shows the dependence of saturation moment MS on cobalt concentration; 

(b) Magnetization as a function of temperature for the Sn0.95Co0.05O2-δ film measured 

from 4.2 K to 300 K using SQUID and from 300 K to 700 K using VSM. Inset shows 

the VSM data for the Sn0.92Co0.08O2-δ film. The dashed lines in the inset are guide to 

the eye.  

 

Fig. 3 Optical conductivity (σ1) in undoped SnO2-δ and Sn0.73Co0.27O2-δ films. The 

inset shows the transparency of a Sn0.73Co0.27O2-δ film in the visible range. 

 

Fig. 4 (a) Temperature dependence of resistivity for the Sn1-xCoxO2-δ films; (b) The 

magnetoresistance (MR) as a function of magnetic field upto 14 tesla for the 

Sn0.95Co0.05O2-δ film at 4, 10 and 20 K. 
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Figure 1: Ogale et al. 
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Figure 2: Ogale et al. 
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