471 research outputs found

    Distribution of the two social forms of the fire ant Solenopsis invicta (Hymenoptera : Formicidae) in the native South American range

    Get PDF
    Polygyne (multiple queen) colony social organization in the fire ant Solenopsis invicta Buren is always associated with the presence of a particular class of alleles at the gene Gp-9. We used diagnostic polymerase chain reaction assays capable of distinguishing these alleles to determine the location of polygyne populations in the native South American range of this species. We found that polygyny occurs in a mosaic pattern with respect to the more common monogyne (single queen) social form, a pattern superficially similar to that seen in the introduced range in the United States. However, polygyny appears to be relatively restricted in its geographical prevalence in the native range compared with the introduced range. This difference may stem from higher dispersal rates in the introduced range, which are associated with greater opportunities for human-mediated transport of mated queens or colony fragments. On the basis of our distributional data and results from other studies, the southern part of the native range of S. invicta, particularly northeastern Argentina, is emerging as the most likely geographic source of the founders of the U.S. population

    Distribution of the Two Social Forms of the Fire Ant Solenopsis invicta (Hymenoptera: Formicidae) in the Native South American Range

    Get PDF
    Polygyne (multiple queen) colony social organization in the fire ant Solenopsis invicta Buren is always associated with the presence of a particular class of alleles at the gene Gp-9. We used diagnostic polymerase chain reaction assays capable of distinguishing these alleles to determine the location of polygyne populations in the native South American range of this species. We found that polygyny occurs in a mosaic pattern with respect to the more common monogyne (single queen) social form, a pattern superficially similar to that seen in the introduced range in the United States. However, polygyny appears to be relatively restricted in its geographical prevalence in the native range compared with the introduced range. This difference may stem from higher dispersal rates in the introduced range, which are associated with greater opportunities for human-mediated transport of mated queens or colony fragments. On the basis of our distributional data and results from other studies, the southern part of the native range of S. invicta, particularly northeastern Argentina, is emerging as the most likely geographic source of the founders of the U.S. populatio

    Development and Evaluation of a Trapping System for Anoplophora glabripennis (Coleoptera: Cerambycidae) in the United States

    Get PDF
    Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae), commonly known as the Asian longhorned beetle, is an invasive wood-boring pest that infests a number of hardwood species and causes considerable economic losses in North America, several countries in Europe, and in its native range in Asia. The success of eradication efforts may depend on early detection of introduced populations; however, detection has been limited to identification of tree damage (oviposition pits and exit holes), and the serendipitous collection of adults, often by members of the public. Here we describe the development, deployment, and evaluation of semiochemical-baited traps in the greater Worcester area in Massachusetts. Over 4 yr of trap evaluation (2009-2012), 1013 intercept panel traps were deployed, 876 of which were baited with three different families of lures. The families included lures exhibiting different rates of release of the male-produced A. glabripennis pheromone, lures with various combinations of plant volatiles, and lures with both the pheromone and plant volatiles combined. Overall, 45 individual beetles were captured in 40 different traps. Beetles were found only in traps with lures. In several cases, trap catches led to the more rapid discovery and management of previously unknown areas of infestation in the Worcester county regulated area. Analysis of the spatial distribution of traps and the known infested trees within the regulated area provides an estimate of the relationship between trap catch and beetle pressure exerted on the traps. Studies continue to optimize lure composition and trap placemen

    Plant volatiles induced by herbivore eggs prime defences and mediate shifts in the reproductive strategy of receiving plants

    Get PDF
    Plants can detect cues associated with the risk of future herbivory and modify defence phenotypes accordingly; however, our current understanding is limited both with respect to the range of early warning cues to which plants respond and the nature of the responses. Here we report that exposure to volatile emissions from plant tissues infested with herbivore eggs promotes stronger defence responses to subsequent herbivory in two Brassica species. Furthermore, exposure to these volatile cues elicited an apparent shift from growth to reproduction in Brassica nigra, with exposed plants exhibiting increased flower and seed production, but reduced leaf production, relative to unexposed controls. Our results thus document plant defence priming in response to a novel environmental cue, oviposition-induced plant volatiles, while also showing that plant responses to early warning cues can include changes in both defence and life-history traits.</p

    Detection of Varicella Zoster Virus Antigen and DNA in Two Cases of Cerebral Amyloid Angiopathy

    Get PDF
    OBJECTIVE: Varicella zoster virus (VZV) vasculopathy and cerebral amyloid angiopathy (CAA) have similar clinical presentations: both affect cerebrovasculature in the elderly, produce hemorrhage, and can have a protracted course of cognitive decline and other neurological deficits. The cause of CAA is unknown, but amyloid-beta (Aβ) is found within arterial walls. Recent studies show that VZV induces Aβ and amylin expression and an amyloid-promoting environment. Thus, we determined if VZV was present in CAA-affected arteries. METHODS: Two subjects with pathologically-verified CAA were identified postmortem and frontal lobes analyzed by immunohistochemistry for arteries containing VZV, Aβ, and amylin and H&E for pathological changes. VZV antigen detection was confirmed by PCR for VZV DNA in the same region. RESULTS: In both CAA cases, sections with cerebral arteries containing VZV antigen with corresponding VZV DNA were identified; VZV antigen co-localized with Aβ in media of arteries with histological changes characteristic of CAA. Amylin was also seen in the intima of a VZV-positive artery in the diabetic subject. Not all Aβ-containing arteries had VZV, but all VZV-positive arteries contained Aβ. CONCLUSIONS: VZV antigen co-localized with Aβ in some affected arteries from two CAA cases, suggesting a possible association between VZV infection and CAA

    3D human skin bioprinting: a view from the bio side

    Get PDF
    Based on the 3D printing technologies and the concepts developed in tissue engineering during the last decades, 3D bioprinting is emerging as the most innovative and promising technology for the generation of human tissues and organs. In the case of skin bioprinting, thanks to the research process carried out during the last years, interfollicular skin has been printed with a structural and functional quality that paves the way for clinical and industrial applications. This review analyzes the present achievements and the future improvements that this area must bring about if bioprinted skin is to become widely used. We have made an effort to integrate the technological and the biological/biomedical sides of the subject.We thank the Spanish Fundación Ramón Areces for its continuous support. This work was partially supported by grant DPI2014-61887-EXP from the Spanish Ministerio de Economía y Competitividad

    Pre-set extrusion bioprinting for multiscale heterogeneous tissue structure fabrication

    Get PDF
    Recent advances in three-dimensional bioprinting technology have led to various attempts in fabricating human tissue-like structures. However, current bioprinting technologies have limitations for creating native tissue-like structures. To resolve these issues, we developed a new pre-set extrusion bioprinting technique that can create heterogeneous, multicellular, and multimaterial structures simultaneously. The key to this ability lies in the use of a precursor cartridge that can stably preserve a multimaterial with a pre-defined configuration that can be simply embedded in a syringe-based printer head. The multimaterial can be printed and miniaturized through a micro-nozzle without conspicuous deformation according to the pre-defined configuration of the precursor cartridge. Using this system, we fabricated heterogeneous tissue-like structures such as spinal cords, hepatic lobule, blood vessels, and capillaries. We further obtained a heterogeneous patterned model that embeds HepG2 cells with endothelial cells in a hepatic lobule-like structure. In comparison with homogeneous and heterogeneous cell printing, the heterogeneous patterned model showed a well-organized hepatic lobule structure and higher enzyme activity of CYP3A4. Therefore, this pre-set extrusion bioprinting method could be widely used in the fabrication of a variety of artificial and functional tissues or organs

    Horizontal Gene Acquisitions, Mobile Element Proliferation, and Genome Decay in the Host-Restricted Plant Pathogen \u3ci\u3eErwinia Tracheiphila\u3c/i\u3e

    Get PDF
    Modern industrial agriculture depends on high-density cultivation of genetically similar crop plants, creating favorable conditions for the emergence of novel pathogens with increased fitness in managed compared with ecologically intact settings. Here, we present the genome sequence of six strains of the cucurbit bacterial wilt pathogen Erwinia tracheiphila (Enterobacteriaceae) isolated from infected squash plants in New York, Pennsylvania, Kentucky, and Michigan. These genomes exhibit a high proportion of recent horizontal gene acquisitions, invasion and remarkable amplification of mobile genetic elements, and pseudogenization of approximately 20% of the coding sequences. These genome attributes indicate that E. tracheiphila recently emerged as a host-restricted pathogen. Furthermore, chromosomal rearrangements associated with phage and transposable element proliferation contribute to substantial differences in gene content and genetic architecture between the six E. tracheiphila strains and other Erwinia species. Together, these data lead us to hypothesize that E. tracheiphila has undergone recent evolution through both genome decay (pseudogenization) and genome expansion (horizontal gene transfer and mobile element amplification). Despite evidence of dramatic genomic changes, the six strains are genetically monomorphic, suggesting a recent population bottleneck and emergence into E. tracheiphila’s current ecological niche
    corecore