100 research outputs found

    Biomarkers of apoptosis

    Get PDF
    Within the era of molecularly targeted anticancer agents, it has become increasingly important to provide proof of mechanism as early on as possible in the drug development cycle, especially in the clinic. Selective activation of apoptosis is often cited as one of the major goals of cancer chemotherapy. Thus, the present minireview focuses on a discussion of the pros and cons of a variety of methodological approaches to detect different components of the apoptotic cascade as potential biomarkers of programmed cell death. The bulk of the discussion centres on serological assays utilising the technique of ELISA, since here there is an obvious advantage of sampling multiple time points. Potential biomarkers of apoptosis including circulating tumour cells, cytokeratins and DNA nucleosomes are discussed at length. However, accepting that a single biomarker may not have the power to predict proof of concept and patient outcome, it is clear that in the future more emphasis will be placed on technologies that can analyse panels of biomarkers in small volumes of samples. To this end the increased throughput afforded by multiplex ELISA technologies is discussed

    New indicators and indexes for benchmarking university–industry–government innovation in medical and life science clusters: results from the European FP7 Regions of Knowledge HealthTIES project

    Get PDF
    Background: While the European Union is striving to become the ‘Innovation Union’, there remains a lack of quantifiable indicators to compare and benchmark regional innovation clusters. To address this issue, a HealthTIES (Healthcare, Technology and Innovation for Economic Success) consortium was funded by the European Union’s Regions of Knowledge initiative, research and innovation funding programme FP7. HealthTIES examined whether the health technology innovation cycle was functioning differently in five European regional innovation clusters and proposed regional and joint actions to improve their performance. The clusters included BioCat (Barcelona, Catalonia, Spain), Medical Delta (Leiden, Rotterdam and Delft, South Holland, Netherlands), Oxford and Thames Valley (United Kingdom), Life Science Zürich (Switzerland), and Innova Észak-Alföld (Debrecen, Hungary). Methods: Appreciation of the ‘triple helix’ of university–industry–government innovation provided the impetus for the development of two quantifiable innovation indexes and related indicators. The HealthTIES H-index is calculated for disease and technology platforms based on the h-index proposed by Hirsch. The HealthTIES Innovation Index is calculated for regions based on 32 relevant quantitative and discriminative indicators grouped into 12 categories and 3 innovation phases, namely ‘Input’ (n = 12), ‘Innovation System’ (n = 9) and ‘Output’ (n = 11). Results: The HealthTIES regions had developed relatively similar disease and technology platform profiles, yet with distinctive strengths and weaknesses. The regional profiles of the innovation cycle in each of the three phases were surprisingly divergent. Comparative assessments based on the indicators and indexes helped identify and share best practice and inform regional and joint action plans to strengthen the competitiveness of the HealthTIES regions. Conclusion: The HealthTIES indicators and indexes provide useful practical tools for the measurement and benchmarking of university–industry–government innovation in European medical and life science clusters. They are validated internally within the HealthTIES consortium and appear to have a degree of external prima facie validity. Potentially, the tools and accompanying analyses can be used beyond the HealthTIES consortium to inform other regional governments, researchers and, possibly, large companies searching for their next location, analyse and benchmark ‘triple helix’ dynamics within their own networks over time, and to develop integrated public–private and cross-regional research and innovation strategies in Europe and beyond

    Extended Field Laser Confocal Microscopy (EFLCM): Combining automated Gigapixel image capture with in silico virtual microscopy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Confocal laser scanning microscopy has revolutionized cell biology. However, the technique has major limitations in speed and sensitivity due to the fact that a single laser beam scans the sample, allowing only a few microseconds signal collection for each pixel. This limitation has been overcome by the introduction of parallel beam illumination techniques in combination with cold CCD camera based image capture.</p> <p>Methods</p> <p>Using the combination of microlens enhanced Nipkow spinning disc confocal illumination together with fully automated image capture and large scale <it>in silico </it>image processing we have developed a system allowing the acquisition, presentation and analysis of maximum resolution confocal panorama images of several Gigapixel size. We call the method Extended Field Laser Confocal Microscopy (EFLCM).</p> <p>Results</p> <p>We show using the EFLCM technique that it is possible to create a continuous confocal multi-colour mosaic from thousands of individually captured images. EFLCM can digitize and analyze histological slides, sections of entire rodent organ and full size embryos. It can also record hundreds of thousands cultured cells at multiple wavelength in single event or time-lapse fashion on fixed slides, in live cell imaging chambers or microtiter plates.</p> <p>Conclusion</p> <p>The observer independent image capture of EFLCM allows quantitative measurements of fluorescence intensities and morphological parameters on a large number of cells. EFLCM therefore bridges the gap between the mainly illustrative fluorescence microscopy and purely quantitative flow cytometry. EFLCM can also be used as high content analysis (HCA) instrument for automated screening processes.</p

    International consensus for neuroblastoma molecular diagnostics: report from the International Neuroblastoma Risk Group (INRG) Biology Committee

    Get PDF
    Neuroblastoma serves as a paradigm for utilising tumour genomic data for determining patient prognosis and treatment allocation. However, before the establishment of the International Neuroblastoma Risk Group (INRG) Task Force in 2004, international consensus on markers, methodology, and data interpretation did not exist, compromising the reliability of decisive genetic markers and inhibiting translational research efforts. The objectives of the INRG Biology Committee were to identify highly prognostic genetic aberrations to be included in the new INRG risk classification schema and to develop precise definitions, decisive biomarkers, and technique standardisation. The review of the INRG database (n=8800 patients) by the INRG Task Force finally enabled the identification of the most significant neuroblastoma biomarkers. In addition, the Biology Committee compared the standard operating procedures of different cooperative groups to arrive at international consensus for methodology, nomenclature, and future directions. Consensus was reached to include MYCN status, 11q23 allelic status, and ploidy in the INRG classification system on the basis of an evidence-based review of the INRG database. Standardised operating procedures for analysing these genetic factors were adopted, and criteria for proper nomenclature were developed. Neuroblastoma treatment planning is highly dependant on tumour cell genomic features, and it is likely that a comprehensive panel of DNA-based biomarkers will be used in future risk assignment algorithms applying genome-wide techniques. Consensus on methodology and interpretation is essential for uniform INRG classification and will greatly facilitate international and cooperative clinical and translational research studies

    Development of a Unifying Target and Consensus Indicators for Global Surgical Systems Strengthening: Proposed by the Global Alliance for Surgery, Obstetric, Trauma, and Anaesthesia Care (The G4 Alliance)

    Get PDF
    After decades on the margins of primary health care, surgical and anaesthesia care is gaining increasing priority within the global development arena. The 2015 publications of the Disease Control Priorities third edition on Essential Surgery and the Lancet Commission on Global Surgery created a compelling evidenced-based argument for the fundamental role of surgery and anaesthesia within cost-effective health systems strengthening global strategy. The launch of the Global Alliance for Surgical, Obstetric, Trauma, and Anaesthesia Care in 2015 has further coordinated efforts to build priority for surgical care and anaesthesia. These combined efforts culminated in the approval of a World Health Assembly resolution recognizing the role of surgical care and anaesthesia as part of universal health coverage. Momentum gained from these milestones highlights the need to identify consensus goals, targets and indicators to guide policy implementation and track progress at the national level. Through an open consultative process that incorporated input from stakeholders from around the globe, a global target calling for safe surgical and anaesthesia care for 80% of the world by 2030 was proposed. In order to achieve this target, we also propose 15 consensus indicators that build on existing surgical systems metrics and expand the ability to prioritize surgical systems strengthening around the world

    Platelet-derived growth factor receptor beta (PDGFRbeta) immunohistochemistry highlights activated bone marrow stroma and is potentially predictive for fibrosis progression in prefibrotic myeloproliferative neoplasia

    No full text
    Item does not contain fulltextAIMS: Myelofibrosis is the result of aberrant stromal activity which is determined routinely by reticulin staining in bone marrow biopsies. As matrix fibres are the product of activated fibroblasts, we analysed fibre accumulation compared to stromal cell activity during myelofibrosis progression using the fibroblast activation marker platelet-derived growth factor receptor beta (PDGFRbeta) by immunohistochemistry. METHODS AND RESULTS: Initial and follow-up bone marrow biopsies from 84 patients with myeloproliferative neoplasia, including 55 cases with primary myelofibrosis, were evaluated from five haematopathology centres. The stromal mass was measured by conventional reticulin staining [myelofibrosis (MF) grade, 0-3] and PDGFRbeta-positive cells using a novel PDGFRbeta scoring system (0-3). Results were correlated for prediction of progression. The MF grade and the PDGFRbeta score showed excellent correlation (Spearman's r = 0.83, P < 0.0001). Elevated PDGFRbeta scores (higher than MF-grade) predicted myelofibrosis progression in total with 43% sensitivity and 57% specificity, and short-term (within 1 year) progression with 82% sensitivity and 53% specificity. Progression of prefibrotic disease to manifest myelofibrosis could be forecast with 90% sensitivity and 75% specificity. CONCLUSION: PDGFRbeta highlights stromal cell activation in marrow fibrosis, which is closely related to matrix accumulation, indicating a direct clinical impact especially in prefibrotic myeloproliferative disorders

    Ulnar/fibular ray defect and brachydactyly in a family: a possible new autosomal dominant syndrome.

    No full text
    The ulnar-mammary syndrome (MIM 181450) includes postaxial ray defects, abnormalities of growth, delayed sexual development, and mammary and apocrine gland hypoplasia. Brachydactyly type E (MIM 113300) presents with shortening of the metacarpals and phalanges in the ulnar ray in association with moderately short stature. We describe a three-generation family with variable expression of ulnar/fibular hypoplasia, brachydactyly, ulnar ray defects and short stature. The proband had ulnar hypoplasia with missing IV-Vth fingers, fibular hypoplasia on the right, bilateral club feet, growth retardation, a hypoplastic mid-face, an ASD and hemangiomas. She had normal mammary tissue and normal sweating. The mother had short stature, midfacial hypoplasia, a hypoplastic ulna and hypoplasia of the IVth metacarpal (brachydactyly) on the right without other associated malformations. The maternal grandfather had mild bilateral fibular hypoplasia and midphalangeal brachydactyly of the IV-Vth toes. His sister had mild short stature and shortening of the IVth metacarpal of the left hand. Two-point linkage analysis with microsatellite markers spanning the Ulnar-Mammary locus at 12q24.1 did not confirm linkage. The patients may have a previously undescribed syndrome
    • …
    corecore