4,671 research outputs found

    Clark W. Beasley (1942–2012)

    Get PDF
    Mcinnes, Sandra J. (2013): Clark W. Beasley (1942-2012). Zootaxa 3652 (4): 497-500, DOI: http://dx.doi.org/10.11646/zootaxa.3652.4.

    Solar sail dynamics in the three-body problem: homoclinic paths of points and orbits

    Get PDF
    In this paper we consider the orbital previous termdynamicsnext term of a previous termsolar sailnext term in the Earth-Sun circular restricted three-body problem. The equations of motion of the previous termsailnext term are given by a set of non-linear autonomous ordinary differential equations, which are non-conservative due to the non-central nature of the force on the previous termsail.next term We consider first the equilibria and linearisation of the system, then examine the non-linear system paying particular attention to its periodic solutions and invariant manifolds. Interestingly, we find there are equilibria admitting homoclinic paths where the stable and unstable invariant manifolds are identical. What is more, we find that periodic orbits about these equilibria also admit homoclinic paths; in fact the entire unstable invariant manifold winds off the periodic orbit, only to wind back onto it in the future. This unexpected result shows that periodic orbits may inherit the homoclinic nature of the point about which they are described

    Verifiable control of a swarm of unmanned aerial vehicles

    Get PDF
    This article considers the distributed control of a swarm of unmanned aerial vehicles (UAVs) investigating autonomous pattern formation and reconfigurability. A behaviour-based approach to formation control is considered with a velocity field control algorithm developed through bifurcating potential fields. This new approach extends previous research into pattern formation using potential field theory by considering the use of bifurcation theory as a means of reconfiguring a swarm pattern through a free parameter change. The advantage of this kind of system is that it is extremely robust to individual failures, is scalpable, and also flexible. The potential field consists of a steering and repulsive term with the bifurcation of the steering potential resulting in a change of the swarm pattern. The repulsive potential ensures collision avoidance and an equally spaced final formation. The stability of the system is demonstrated to ensure that desired behaviours always occur, assuming that at large separation distances the repulsive potential can be neglected through a scale separation that exists between the steering and repulsive potential. The control laws developed are applied to a formation of ten UAVs using a velocity field tracking approach, where it is shown numerically that desired patterns can be formed safely ensuring collision avoidance

    Distributed control of multi-robot systems using bifurcating potential fields

    Get PDF
    The distributed control of multi-robot systems has been shown to have advantages over conventional single robot systems. These include scalability, flexibility and robustness to failures. This paper considers pattern formation and reconfigurability in a multi-robot system using bifurcating potential fields. It is shown how various patterns can be achieved through a simple free parameter change. In addition the stability of the system of robots is proven to ensure that desired behaviours always occur

    Pattern transition in spacecraft formation flying via the artificial potential field method and bifurcation theory

    Get PDF
    In recent years many new and exciting space concepts have developed around spacecraft formation flying. This form of distributed system has the advantages of being extremely flexible and robust. This paper considers the development of new control methodologies based on the artificial potential function method and extends previous research in this area by considering bifurcation theory as a means of controlling the transition between different formations. For real, safety critical applications it is important to prove the stability of the system. This paper therefore aims to replace algorithm validation with mathematical proof through dynamical systems theory. Finally we consider the transition of formations at the Sun-Earth L2 point

    Shape-changing solar sails for novel mission applications

    Get PDF
    In order to increase the range of potential mission applications of solar sail technology, this paper introduces the concepts of shape change and continuously variable optical properties to large gossamer spacecraft. Merging the two concepts leads to the idea of solar sails as multi-functional platforms that can have potential benefits over conventional solar sails by delivering additional key mission functions such as power collection, sensing and communications. To this aim, the paper investigates the static deflection of a thin inelastic circular sail film with a variable surface reflectivity distribution. The sail film is modelled as a single surface framed by a rigid supporting hoop structure. When changing the reflectivity coefficient across the sail surface, the forces acting on the sail can be controlled without changing the incidence angle relative to the Sun. In addition, by assigning an appropriate reflectivity function across the sail, the load distribution due to solar radiation pressure can also be manipulated to control the billowing of the film. By an appropriate choice of reflectivity across the sail, specific geometries can be generated, such as a parabolic reflector, thus enabling a multi-functional sail. This novel concept of optical reconfiguration can potentially extend solar sail mission applications

    Effects of high temperature and pressure on silica optical fibre sensors

    No full text
    We report on the effects of liquids at high temperature and pressure on silica optical fibres, sensors and gratings. We propose that the diffusion of molecules into the silica and the resultant expansion of the network are responsible for observed fibre expansions of up to 0.2% and Bragg wavelength increases of 2nm at 1525nm. Amorphous carbon hermetic coating has shown a reduction of these effects by an order of magnitude at 300°C. These results have strong implications for the deployment of fibre sensors in oil wells

    Metallaborane reaction chemistry. A facile and reversible dioxygen capture by a B-frame-supported bimetallic: structure of [(PMe2Ph)(4)(O-2)Pt2B10H10]

    Get PDF
    [(PMe2Ph)(4)Pt2B10H10] 1 reversibly takes up atmospheric dioxygen to give the fluxional dioxygen-dimetallaborane complex [(PMe2Ph)(4)(O-2)Pt2B10H10] 2, which has Pt-Pt 2.7143(3), Pt-O 2.141(4) and 2.151(4) and O-O 1.434(6) Angstrom

    Design of optimal transfers between North and South Pole-sitter orbits

    Get PDF
    Recent studies have shown the feasibility of an Earth pole-sitter mission, where a spacecraft follows the Earth’s polar axis to have a continuous, hemispherical view of one of the Earth’s Poles. However, due to the tilt of the polar axis, the North and South Poles are alternately situated in darkness for long periods dur-ing the year. This significantly constrains observations and decreases mission scientific return. This paper therefore investigates transfers between north and south pole-sitter orbits before the start of the Arctic and Antarctic winters to maximize scientific return by observing the polar regions only when lit. Clearly, such a transfer can also be employed for the sole purpose of visiting both the North and South Poles with one single spacecraft during one single mission. To enable such a novel transfer, two types of propulsion are proposed, including so-lar electric propulsion (SEP) and a hybridization of SEP with solar sailing. A di-rect optimization method based on pseudospectral transcription is used to find both transfers that minimize the SEP propellant consumption and transfers that trade-off SEP propellant consumption and observation time of the Poles. Also, a feedback control is developed to account for non-ideal properties of the solar sail. It is shown that, for all cases considered, hybrid low-thrust propulsion out-performs the pure SEP case, while enabling a transfer that would not be feasible with current solar sail technology
    corecore