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Distributed Control of Multi-Robot Systems using Bifurcating Potential
Fields

Derek Bennet and Colin Mclnnes
Department of Mechanical Engineering
University of Strathclyde
Glasgow, G1 1XJ
{derek.bennet, colin.mcinnp@strath.ac.uk

Abstract— The distributed control of multi-robot systems has  different tasks a desirable property of the system would
been shown to have advantages over conventional single rdbo pe reconfigurability. In order to minimise computational
systems. These include scalability, flexibility and robustess to expense bifurcation theory can be used to reconfigure the

failures. This paper considers pattern formation and recon f tion th h imole f i h
figurability in a multi-robot system using bifurcating pote ntial ormation through a simpie iree parameter change.

fields. It is shown how various patterns can be achieved thragh

a simple free parameter change. In addition the stability ofthe For real, safety critical applications it is essential that
system of robots is proven to ensure that desired behaviours the behaviour of each robot is verified in order to ensure
always occur. that no unwanted behaviours will occur. Winfield®] [

has introduced the term ‘swarm engineering’ to highlight
the key issues that are involved in real, safety critical
Over the past two decades distributed robot systenmapplications as opposed to those based on simulation.
have been developed as a method of solving a variety Through the use of dynamical systems theory this paper
engineering problems?]. Most of the research in this areaaims to replace algorithm validation with mathematical
is influenced by the early work of Brook®][in the mid proofin order to prove that desired formations always accur
1980's who introduced the concept of behavioural robotics.
Although the majority of previous research had been The paper proceeds as follows. In the next section we
concerned with single robot systems it was suggested th@éscribe the model used and explain the artificial potential
a significant step forward would be to draw on inspiratiotfield method and bifurcation theory. We also discuss the
from nature and utilise the idea of emergent behaviolinear and non-linear stability of the models developed.
through decentralised control. This form of control has th&ection Illshows the numerical results of simulations carried
advantages of being robust, scalable and flexible and h@sdemonstrate pattern formations and reconfigurability.
been applied to areas such a surveillance, exploration and
transportationq], [?].

I. INTRODUCTION

Il. FORMATION MODEL

We consider a system of homogeneous autonomous robots
The purpose of this paper is to investigate thdl <: < N)interacting via an artificial potential functids.
distributed control of multi-robot pattern formation Itis assumed that all robots can communicate with each other
and reconfigurability. To achieve this we consider the usand are fully actuated. The negative gradient of the adifici
of the artificial potential field method and extend previougotential defines a virtual force acting on each robot so that
research by considering bifurcation theory in order to hmvethe dynamics of each robot can be described by Eq. 1 and
reconfigurable formation. Dynamical systems theory is usedl with mass,m, position,x;, and velocity,v;;
to demonstrate mathematically the stability of the system s dx:
that desired behaviours always occur. dtz =V; 1)
Artificial potential fields were fir_st introduced in .Khatib m% = —ViUS(x;) — ViUR(xi;) — oV, )
[?] in the area of obstacle avoidance for manipulators dt
and mobile robots. More recently they have been applied From Eq. 2 it can be seen that the virtual force experienced
successfully in the area of autonomous robot motioby each robot is dependent upon the gradient of two different
planning [?], [?], as a form of distributed behavioural artificial potential functions and a dissipative term, wer
control in [?] and in space applications?]] [?], [?]. ¢ > 0 controls the amplitude of the dissipation. The first
The basic idea behind potential field theory is to creatterm in Eq. 2 is defined as thsteering potentiglU® which
a workspace where a robot is attracted towards a goaill control the formation, whereas the second term in Eq.
state with a repulsive potential ensuring collide avoidanc? is the collision avoidance pairwisepulsive potentialt/ %,
[?]. As a multi-robot team may be required to achieve




The repulsive potentials based on a generalized Morse

potential [?] as shown in Eq. 3; R
Loy G oS
Uff =3 Crexp /e ®  rR"™as T oL
G +uR(S —1) — R¥(S —1)> — oV (8)
Where C,. and L, represent the amplitude and length- ) ;
scale of repulsive potential respectively drg| = |x; — ;. Now defines = — << 1 so that;
The total repulsive force on thg€” robot is dependent iV o S
upon the position of all the othefN — 1) robots in the mV— = ZLexp ¢
formation. The repulsive potential is therefore used taens ds € 3 3
that as the robots are steered towards the goal state they do +R [“R(S — )= RY(S-1)" - UV} (9)

not collide with each other. Once all the robots have been | et — 0 in order to consider ‘far field’ dynamics which

driven to the desired equilibrium state the repulsive pidén forms a singularly perturbed system:
also ensures that they are equally spaced for symmetric

i 1
formations. lim = exp(fS/e) —0 (10)
e—0 ¢
A. Artificial Potential Function Scale Separation Therefore _at large  separation _dlstances th? repulsn{e
potential vanishes and we can consider the steering patenti

As noted in the previous section the force experienced by, when considering the stability of analysis of the syste
each robot is dependent upon the gradient of two different ar

tificial potential functions. The steering potential is adtion
of position only. We now consider supercritical pitchfork
bifurcation equation in Eq. 4, with bifurcation parameter
and length scalé?. A detailed explanation of this steering _
potential is given insection Il B The repulsive potential mvﬂ - C, exp—5+
noted in the previous section is given in Eq. 5;

Conversely if we defineS = 5 we find that the ‘near
field’ dynamics are defined by; c

eR [pR(S — 1) — R*(S —1)° — oV](11)

1 1 ; .
Us = _§MX_R)2+Z(X_R)4 (4) and lettinge — 0;
av g
V—_ == C’r - 12
UR = Cpexp=X/Lr (5) mas T (12
For illustration we consider a simple 1-dimensional Thus, at small separations the steering potential vanishes
system with position coordinat. and we can treat the collisions separate in the subsequent

stability analysis.

Defining an outer region dependent upon the steering 1.parameter Static Bifurcation
potential only and an inner region dependent upon the . . .
repulsive potential only we can show that these two regionoSnR;;irrg]r?:rti)ti:C; mitlér?fozrlzrl;u}fi?é:t?opr{c%egsastr?(?vx?neigaéed
are separated so that the robot move under the influen be p L - d-

. . : fg The aim of this potential is to drive each robot to a goal
of the long-range steering potential, but with short ranggistancer from the origin in the x-y plane thus forming a
collisions (for L,./R << 1) effectively creating a boundary mmetr’ic' fin
layer between them. This can then be used to determine R 9:
non-linear stability of the system considering the stagrin

. 1 1
potential only. US(xisp0) = —5p(pi - r)?+ 7 (b= r)* (13)
For 1D motion of a robot of mass we have; Wherep; = (z7 + y2)°5.
dv QUE  9gUS Depending on the sign ¢f, the steering potential can have
mor T Tox T ax oV (6)  two distinct forms. Fig. 1 shows how the potential bifurcate
So that from a single local minimum into two local minima when

1« = 0, while Fig. 2 shows the shape of the potential when
pw<0andy > 0.
mvd_v — & exp’X/LT

dX L,
+u(X —R)— (X —RP*—-aV (7)

Scaling X such thatS = X/R then;



5 Stable

ie calculating its eigenvalue spectrum. Therefore, the egosit
N of motion for the model are re-cast as;
peq 3.5
34 o
Sta—a_s_ble . Unstable Xl = Vi
2 V; —oV; — VlUS(XZ)
1.5 4
14 — ( f(XZ’VZ) ) (16)
05 g(XZ—,VZ—)
~ Stable
& 4 2 0, 2 . s s Let x, andv, denote fixed points with; = v; = 0 so
that;

Fig. 1. Supercritical pitchfork bifurcation diagram

. f(XO7VO) =0 (17)
I\ g(XmVO) =0 (18)
i N NS Thus,v, = 0 and VU = 0 at equilibrium. This occurs

whenp, = rif p < 0andp, = r,r £/ if p > 0.

0] (ii) Defining 6x; = X; — X, and év; = v; — v, and Taylor
Series expanding about the fixed points to linear order the
eigenvalues of system can be found using;

1
1
1

Fig. 2. Potential functions: (i) < 0 and (i) © > 0

The equilibrium states of the potential occurs whenever v, ) T J oV, (19)
oU/dp; = 0. Therefore;
where,
ou
= —plpi =) + (pi —71)° (14)
O 5 ( (S0 va)) - (£, v0)) > (20)
If 4 < 0 equilibrium occurs wherp; = . If > 0 o (X Vi) gy (9(xiva)) /L
equilibrium occurs wherp; = r, r & /. Therefore, a The Jacobiany, is then a2z2 matrix given by;
single ring will bifurcate to a double ring using as a ' ’
control parameter. 0 1
J= ( _PU ) (21)
The stability of the potential is determined from the sign op? %o Vo

of the second derivative, given in Eq. 15, and summarised g htityting a trial exponential solution into Eq. 19 we
in Table I; find that;

02U .
e —p+3(pi —1)? (15) ( g\);: ) = < gcz ) e (22)

Therefore, the eigenvalueg, of the system are found
TABLE | from det(J — Al) = 0.
STABILITY OF EQUILIBRIUM STATES
As shown previously, ifu < 0 equilibrium of the system
Bifurcation  Equilibrium 52U /9p7 Stability occurs wherx, = (r,0) andv; = 0. Evaluating the Jacobian
parametery _position, peq matrix given in Eq. 21 we find that;

<0 r >0 stable minimum

>0 r <0 unstable maximum
T+ /1 >0 stable minimum J= 0 1 (23)
r—/n >0 stable minimum uw —c

) N o ) The corresponding eigenvalue spectrum is therefore;
1) Linear stability: 1-parameter static bifurcationin or-

_der to determine the linear s_tability of a sys_tem of robpt—sub A= 1/2(—0 + /(0% ¥ 4p)) (24)
ject to such al-parameter bifurcation steering potential we

perform an eigenvalue analysis on the linearized equationsAs ¢ > 0 and u < 0 the eigenvalues are always
of motion assuming that at large separation distances tle¢her negative real or complex with negative real part
repulsive potential can be neglected through scale séparatas —o + /(02 +4u) ¥ 0. The equilibrium position can
as explained irsection Il A The linear stability analysis will therefore be considered as linearly stable.

be used to determine the local behaviour of the system by



If © > 0 equilibrium of the system occurs wheq; = The rate of change of the Lyapunov function can be
(1,0), Xo2 = (r+/1,0) andxo3 = (r— /11, 0) with v; = 0. expressed as;
The Jacobian matrix evaluated at the three different dwguili

rium positions is given by Eq. 25, 26 and 27 respectively arL — oL X; + 8_L v (31)
as; dt oX; ov;
Then, substituting Eq. 16 into Eq. 31 it can be seen that;
0 1
Ji = < P ) (25) dL
- _ 2
E——UZViSO (32)
n=( 0 1 (26) '
27\ 2 -0 From Lyapunov’s Second Theorerf] it states that ifL
is a positive definite function and is a negative definite
J; = ( 0 1 ) (27) the system will be uniformly stable. A problem arises in the
—2u —o use of superimposed artificial potential functions/as: 0.
The eigenvalues fod; are; This implies thatZ could equal zero in a position other
than the goal minimum suggesting that the system may
A= 1/2 (—a + /(0% + 4#)) (28) become trapped in a local minimum. In order to ensure that

o ) ) , our system is asymptotically stable at the desired goat stat
Considering the pair of eigenvalues in Eq. 28 we Caghe | aSalle principled] can be used. It extends the above

show that—o + /(0% +4p) > 0 since,0® +4u > 0®  conspraints to state that i£(0) = L(0) = 0 and the set

and therefore we always have atleast one positive re{aJ(”L = 0} only occurs wherx; = x,, then the goal state is

e_igenvalue. This equilibrium position is therefore alway%symptotically stable. Therefore, for the quadratic ptiagn
linearly unstable. considered in this paper the LaSalle principle is valid. As
we have a smooth well defined symmetric potential field,
equilibrium only occurs at the goal states so the local maim
problem can be avoided and the system will relax into the

A= 172 (_U S AVACaE 8”)) (29)  gesired goal position.
Again aso > 0 and p > 0 the eigenvalues are always ¢, 2-parameter Static Bifurcation

either negative real or complex with negative real part as

—o + /(62 —8u) # 0. The equilibrium positions can
therefore be considered as linearly stable.

The eigenvalues fod; andJs are;

An extension to the 1-parameter pitchfork bifurcation is to
consider 2-parameter bifurcations such as the so-callsg cu
catastrophe given in Eq. 33. Fig. 3 shows the variation of the

2) Non-linear stability: 1-parameter static bifurcation: equilibrium position with the two parameteys; and .

To determine the non-linear stability of the dynamical
system we consider Lyapunov's Second Theorem asj(p;; 1, u2) = pu1 (pi — 1)
expressed by Kalman and Bertré®h[[?] ;

2

+(pi — )"+ pa(pi — 1) (33)

“If the rate of change ofl E(x)/dt of the energyE(x) of
an isolated physical system is negative for every possible
state x, except for a single equilibrium state., then the
energy will continually decrease until it finally assumes it
minimum valueE(x.)”

The aim of thesteering potentialis to drive the robot
to the desired equilibrium position that corresponds to the
minimum potential. Therefore, if Lyapunov’s method can be
used for the system, as time evolves the system will relax
into the minimum energy state.

. . . Fig. 3. C tastroph f
The Lyapunov function/., is defined as the total energy 9 usp catastrophe surfady [

of the system, wheré®(x;) is given in Eg. 13 so that for Mapping the cusp potential onto the — us plane we

unit mass; can see how the system behaviour changes for different
1 bifurcation parameters as shown in Fig. 4, which is similar

L= Z <§Vf + US(Xz')) (30) to a phase diagram for water for example. As pressure and
i temperature are varied different phases can be achigved|

Where, L > 0 other than at the goal state whén= 0. which is analogous to the different patterns we can achieve

as the bifurcation parameters are altered.



te] av;

3 m i = —Ai — ViUS(Xi) — ViUR(xij) (35)

1 - g —Xijl/lo g ..

; Ai =" Co(Vij Kij exp )%i; (36)

USROS i#j
The emergence of vortex like formations can be seen
1 1 through the conservation of angular momentuin,

2 d

" in X mV; = E Z(Xi X mVi)

0 K2 K2

- 37

Fig. 4. Mapping of equilibrium ornu;-p2 plane showing number of - E =0 ( )

equilibrium states (rings .
a (fings) It can also be shown that as time evolves the system of

robots will relax into the minimum energyy, state where

If we setus; = 0 we have the usual pitchfork bifurcation >, Vv; - A; = 0. The swarm therefore dissipates energy
equation. However, fop; > 0 and all i, we only have one while conserving angular momentum and so relaxes into
equilibrium position. Foru; < 0 and for all 4, we have the rotating ringp] wherev;; - X;; = 0.
either 1 or 2 equilibrium states as shown. If we ho}d,
at a constant negative value and alternatefrom negative
to positive we obtain a hysteresis loop alternating between o ] i
one and two equilibrium positions. We can therefore tip thé Static Bifurcation Formation Patterns
system into the upper or lower branches of the pitchfork Fig. 6 shows the three different robot formations that
equation as shown in Fig. 5. Thus if the system is in the bisan be formed using a 1 parameter static bifurcation. The
stable state, control over the position of a single minimuraystem considers a swarm 8 robots with unit mass and
state can be achieved through the variation of the parameter = 10.
in the bifurcation equation.

14
12 2

IIl. NUMERICAL RESULTS

10 15
8
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Fig. 5. Cusp catastrophe: ()1 < 0, p2 = 0 (i) p1 < 0, p2 > 0 (iii) sz oz s s EIEE I A )
w1 <0, u2 <0 ..
(i) (iii)

D. Rotation of the Formation

Recent work by Mcinnes?] has shown how vortex Fig- 6. Formation patterns: (i) cluste€f = 1, Lr = 0.5 andu = —4
lik . b hi d th h ificial . %) ring (Cr =1, L, = 0.2, r = 3 and u = —4) (iii) two rings (C = 1,
ike swarming can be achieved through artificial potentiall —'o 5" — 3'and,. = 1.5)

field methods. Eq. 1 and 2 are now modified to include a

dissipative orientation term as shown in Eq. 34 and 35. EQ. 1o first formation corresponds to the case when —4

35 shows the ori_entation term that dissipates energy whil§h,y,. — 1 The robots are driven towards the origin with

aligning the velocity vectors of members of the swarm wherg,e o uisive potentialiltimately causing a uniform cluster

Co and L, are constants representing the magnitude ang ¢,;m The second formation consists of a ring with the

length-scale of the dissipation; radius of the ring determined by the magnitude that the
dx; steering potentiahas been moved along the-axis (in this

FTERRA (34)  caser = 3). The final formation consists of two rings with




1 = 1.5. The stable equilibrium state in the second formatioD. Rotation of the Static Bifurcation Formation
has become unstable and the system bifurcates into twa ”ngSFigures 9 shows the rotation of the ring formation using

B. 1-Parameter Static Bifurcation

Figures 7 shows the transition of a formation36frobots

Eq. 36. The formation relaxes into to a single ring and
conserves angular momentum by rotating about its centre
of mass.

in the x-y plane. As it can be seen, the system changes from
a ring to two rings to a cluster then back to a ring. This
is achieved through a simple parameter change and is one

of the advantages of using the pitchfork bifurcation ecrati
as a basis for the artificial potential function. Rather than
controlling each robot individually the global pattern bkt

formation can be manipulated via

150+ Ring:

p=-2,r=2

Cluster:

1004 p=-2,r=0

time

Two Rings:
p=2,r=2

50

Fig. 7. Transition between different formations with= 1

C. 2-Parameter Dynamic Bifurcation

150+

|

0
;
.»

i

100

I
l

i

L

5

time

50

Fig. 9. Time evolution of vortex ring

IV. CONCLUSION

We have shown that the control of a multi-robot system
can be achieved through the use of the artificial potential
function method. We have extended previous research in this
area through the use of bifurcation theory to demonstrate
that through a simple parameter change a formation of
robots can be made to alter their configuration and shown

Figure 8 demonstrates how a 2-parameter bifurcation cdlpW 1 and 2 parameter static bifurcations can be used to
be used to manipulate a robot formation. As can be seenlffis effect. An important step in real engineered systems

we start in the two ring case whaen, = —2 and s = 0

is to ensure that the formation can form reliably. Through

and then vary,, therefore performing a bifurcation on the dynamical systems theory we have demonstrated the syabilit

Inner Ring:
=21, =2

Outer Ring:
Ul = '21 Uz =2

time
~
brsd

Two Rings:
W =-24,=0

Fig. 8. Evolution of cusp catastrophe results

ensure that desired behaviours always occur. Future work
will consider generalising the potential function method i
order to achieve arbitrary patterns whilst also considgrin
nonholonomic constraints in order to make the model more
realistic.
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