165 research outputs found

    Teacher and child talk in active learning and whole-class contexts : some implications for children from economically less advantaged home backgrounds

    Get PDF
    This paper reports the experiences of 150 children and six primary teachers when active learning pedagogies were introduced into the first year of primary schools. Although active learning increased the amount of talk between children, those from socio-economically advantaged homes talked more than those from less advantaged homes. Also, individual children experienced very little time engaged in high-quality talk with the teacher, despite the teachers spending over one-third of their time responding to children's needs and interests. Contextual differences, such as the different staffing ratios in schools and pre-schools,may affect how well the benefits of active learning transfer from preschool contexts into primary schools. Policy-makers and teachers should pay particular attention to the implications of this for the education of children from economically less advantaged home backgrounds

    Long-term impacts of repeated cover cropping and cultivation approaches on subsoil physical properties

    Get PDF
    The intensification of arable agriculture has resulted in an increase in vehicle wheel load and the intensity of field operations, which has increased the risk and incidence of degradation in physical properties of the uncultivated subsoil layer. Biopores generated by the long-term, repeated use of specific cover crops within an arable rotation has been suggested as an approach to improve subsoil physical properties. Therefore, this paper aimed to determine the impact of long-term repeated cover cropping and the interaction of rotation treatments with different cultivation approaches on subsoil physical properties. Data was collected at the NIAB ‘Sustainable Trial for Arable Rotations’ long-term, rotation and cultivation field experiment established in 2006. Rotation treatments comprised a brassica cover crop alternated annually with winter wheat (ALTCC) compared to continuous winter wheat (CWW). Cultivation treatments comprised PLOUGH (250 mm depth), and non-inversion cultivation at 250 mm (DEEP) and 100 mm (SHALLOW) depths. Penetration resistance and volumetric soil moisture were collected at bi-monthly intervals during the 2018/19 growing season. Undisturbed soil cores were collected for laboratory analyses of soil water retention, water stable aggregates, root morphology digital scanning and biomass, and X-ray computed tomography (CT). Results showed that treatment ALTCC combined with SHALLOW, resulted in lower penetration resistance and increased moisture in the subsoil. This increased subsoil moisture persisted later into the season compared to the control. SHALLOW increased subsoil water retention, improved subsoil root morphology and increased subsoil porosity. Benefits from treatment ALTCC were not observed where combined with higher intensity, deeper cultivation. Overall, the combination of treatments ALTCC with SHALLOW, produced significant benefits to subsoil physical properties

    Characterisation of the muon beams for the Muon Ionisation Cooling Experiment

    Get PDF
    A novel single-particle technique to measure emittance has been developed and used to characterise seventeen different muon beams for the Muon Ionisation Cooling Experiment (MICE). The muon beams, whose mean momenta vary from 171 to 281 MeV/c, have emittances of approximately 1.2–2.3 π mm-rad horizontally and 0.6–1.0 π mm-rad vertically, a horizontal dispersion of 90–190 mm and momentum spreads of about 25 MeV/c. There is reasonable agreement between the measured parameters of the beams and the results of simulations. The beams are found to meet the requirements of MICE

    MICE: The muon ionization cooling experiment. Step I: First measurement of emittance with particle physics detectors

    Get PDF
    Copyright @ 2011 APSThe Muon Ionization Cooling Experiment (MICE) is a strategic R&D project intended to demonstrate the only practical solution to providing high brilliance beams necessary for a neutrino factory or muon collider. MICE is under development at the Rutherford Appleton Laboratory (RAL) in the United Kingdom. It comprises a dedicated beamline to generate a range of input muon emittances and momenta, with time-of-flight and Cherenkov detectors to ensure a pure muon beam. The emittance of the incoming beam will be measured in the upstream magnetic spectrometer with a scintillating fiber tracker. A cooling cell will then follow, alternating energy loss in Liquid Hydrogen (LH2) absorbers to RF cavity acceleration. A second spectrometer, identical to the first, and a second muon identification system will measure the outgoing emittance. In the 2010 run at RAL the muon beamline and most detectors were fully commissioned and a first measurement of the emittance of the muon beam with particle physics (time-of-flight) detectors was performed. The analysis of these data was recently completed and is discussed in this paper. Future steps for MICE, where beam emittance and emittance reduction (cooling) are to be measured with greater accuracy, are also presented.This work was supported by NSF grant PHY-0842798

    COgnitive behavioural therapy versus standardised medical care for adults with Dissociative non-Epileptic Seizures (CODES): statistical and economic analysis plan for a randomised controlled trial.

    Get PDF
    BACKGROUND: Dissociative seizures (DSs), also called psychogenic non-epileptic seizures, are a distressing and disabling problem for many patients in neurological settings with high and often unnecessary economic costs. The COgnitive behavioural therapy versus standardised medical care for adults with Dissociative non-Epileptic Seizures (CODES) trial is an evaluation of a specifically tailored psychological intervention with the aims of reducing seizure frequency and severity and improving psychological well-being in adults with DS. The aim of this paper is to report in detail the quantitative and economic analysis plan for the CODES trial, as agreed by the trial steering committee. METHODS: The CODES trial is a multicentre, pragmatic, parallel group, randomised controlled trial performed to evaluate the clinical effectiveness and cost-effectiveness of 13 sessions of cognitive behavioural therapy (CBT) plus standardised medical care (SMC) compared with SMC alone for adult outpatients with DS. DISCUSSION: The objectives and design of the trial are summarised, and the aims and procedures of the planned analyses are illustrated. The proposed analysis plan addresses statistical considerations such as maintaining blinding, monitoring adherence with the protocol, describing aspects of treatment and dealing with missing data. The formal analysis approach for the primary and secondary outcomes is described, as are the descriptive statistics that will be reported. This paper provides transparency to the planned inferential analyses for the CODES trial prior to the extraction of outcome data. It also provides an update to the previously published trial protocol and guidance to those conducting similar trials. TRIAL REGISTRATION: ISRCTN registry ISRCTN05681227 (registered on 5 March 2014); ClinicalTrials.gov NCT02325544 (registered on 15 December 2014)

    COgnitive behavioural therapy vs standardised medical care for adults with Dissociative non-Epileptic Seizures (CODES): a multicentre randomised controlled trial protocol

    Get PDF
    Background The evidence base for the effectiveness of psychological interventions for patients with dissociative non-epileptic seizures (DS) is currently extremely limited, although data from two small pilot randomised controlled trials (RCTs), including from our group, suggest that Cognitive Behavioural Therapy (CBT) may be effective in reducing DS occurrence and may improve aspects of psychological status and psychosocial functioning. Methods/Design The study is a multicentre, pragmatic parallel group RCT to evaluate the clinical and cost-effectiveness of specifically-tailored CBT plus standardised medical care (SMC) vs SMC alone in reducing DS frequency and improving psychological and health-related outcomes. In the initial screening phase, patients with DS will receive their diagnosis from a neurologist/epilepsy specialist. If patients are eligible and interested following the provision of study information and a booklet about DS, they will consent to provide demographic information and fortnightly data about their seizures, and agree to see a psychiatrist three months later. We aim to recruit ~500 patients to this screening stage. After a review three months later by a psychiatrist, those patients who have continued to have DS in the previous eight weeks and who meet further eligibility criteria will be told about the trial comparing CBT + SMC vs SMC alone. If they are interested in participating, they will be given a further booklet on DS and study information. A research worker will see them to obtain their informed consent to take part in the RCT. We aim to randomise 298 people (149 to each arm). In addition to a baseline assessment, data will be collected at 6 and 12 months post randomisation. Our primary outcome is monthly seizure frequency in the preceding month. Secondary outcomes include seizure severity, measures of seizure freedom and reduction, psychological distress and psychosocial functioning, quality of life, health service use, cost effectiveness and adverse events. We will include a nested qualitative study to evaluate participants’ views of the intervention and factors that acted as facilitators and barriers to participation. Discussion This study will be the first adequately powered evaluation of CBT for this patient group and offers the potential to provide an evidence base for treating this patient group. Trial registration Current Controlled Trials ISRCTN05681227 ClinicalTrials.gov NCT0232554

    The conceptual design of CLARA, a novel fel test facility for ultra-short pulse generation

    Get PDF
    CLARA will be a novel FEL test facility focussed on the generation of ultra-short photon pulses with extreme levels of stability and synchronisation. The principal aim is to experimentally demonstrate that sub-cooperation length pulse generation with FELs is viable, and to compare the various schemes being championed. The results will translate directly to existing and future X-ray FELs, enabling them to generate attosecond pulses, thereby extending their science capabilities. This paper gives an overview of the motivation for CLARA, describes the facility design (reported in detail in the recently published Conceptual Design Report [1]) and proposed operating modes and summarises the proposed areas of FEL research
    • 

    corecore