370 research outputs found

    Continuity and the Flow of Time: A Cognitive Science Perspective

    Get PDF

    Testing of a 3D-human skin equivalent for radiation experiments

    Get PDF

    Inflammation-related response to irradiation in different human skin culture systems

    Get PDF

    Phosphorylation Regulates CIRBP Arginine Methylation, Transportin-1 Binding and Liquid-Liquid Phase Separation

    Get PDF
    Arginine-glycine(-glycine) (RG/RGG) regions are highly abundant in RNA-binding proteins and involved in numerous physiological processes. Aberrant liquid-liquid phase separation (LLPS) and stress granule (SGs) association of RG/RGG regions in the cytoplasm have been implicated in several neurodegenerative disorders. LLPS and SG association of these proteins is regulated by the interaction with nuclear import receptors, such as transportin-1 (TNPO1), and by post-translational arginine methylation. Strikingly, many RG/RGG proteins harbour potential phosphorylation sites within or close to their arginine methylated regions, indicating a regulatory role. Here, we studied the role of phosphorylation within RG/RGG regions on arginine methylation, TNPO1-binding and LLPS using the cold-inducible RNA-binding protein (CIRBP) as a paradigm. We show that the RG/RGG region of CIRBP is in vitro phosphorylated by serine-arginine protein kinase 1 (SRPK1), and discovered two novel phosphorylation sites in CIRBP. SRPK1-mediated phosphorylation of the CIRBP RG/RGG region impairs LLPS and binding to TNPO1 in vitro and interferes with SG association in cells. Furthermore, we uncovered that arginine methylation of the CIRBP RG/RGG region regulates in vitro phosphorylation by SRPK1. In conclusion, our findings indicate that LLPS and TNPO1-mediated chaperoning of RG/RGG proteins is regulated through an intricate interplay of post-translational modifications

    Predictive value of neurological examination for early cortical responses to somatosensory evoked potentials in patients with postanoxic coma

    Get PDF
    Bilateral absence of cortical N20 responses of median nerve somatosensory evoked potentials (SEP) predicts poor neurological outcome in postanoxic coma after cardiopulmonary resuscitation (CPR). Although SEP is easy to perform and available in most hospitals, it is worthwhile to know how neurological signs are associated with SEP results. The aim of this study was to investigate whether specific clinical neurological signs are associated with either an absent or a present median nerve SEP in patients after CPR. Data from the previously published multicenter prospective cohort study PROPAC (prognosis in postanoxic coma, 2000–2003) were used. Neurological examination, consisting of Glasgow Coma Score (GCS) and brain stem reflexes, and SEP were performed 24, 48, and 72 h after CPR. Positive predictive values for predicting absent and present SEP, as well as diagnostic accuracy were calculated. Data of 407 patients were included. Of the 781 SEPs performed, N20 s were present in 401, bilaterally absent in 299, and 81 SEPs were technically undeterminable. The highest positive predictive values (0.63–0.91) for an absent SEP were found for absent pupillary light responses. The highest positive predictive values (0.71–0.83) for a present SEP were found for motor scores of withdrawal to painful stimuli or better. Multivariate analyses showed a fair diagnostic accuracy (0.78) for neurological examination in predicting an absent or present SEP at 48 or 72 h after CPR. This study shows that neurological examination cannot reliably predict absent or present cortical N20 responses in median nerve SEPs in patients after CPR

    Evaluation of a novel mitochondrial Pan-Mucorales marker for the detection, identification, quantification, and growth stage determination of mucormycetes

    Get PDF
    Mucormycosis infections are infrequent yet aggressive and serious fungal infections. Early diagnosis of mucormycosis and its discrimination from other fungal infections is required for targeted treatment and more favorable patient outcomes. The majority of the molecular assays use 18 S rDNA. In the current study, we aimed to explore the potential of the mitochondrial rnl (encoding for large-subunit-ribosomal-RNA) gene as a novel molecular marker suitable for research and diagnostics. Rnl was evaluated as a marker for: (1) the Mucorales family, (2) species identification (Rhizopus arrhizus, R. microsporus, Mucor circinelloides, and Lichtheimia species complexes), (3) growth stage, and (4) quantification. Sensitivity, specificity, discriminatory power, the limit of detection (LoD), and cross-reactivity were evaluated. Assays were tested using pure cultures, spiked clinical samples, murine organs, and human paraffin-embedded-tissue (FFPE) samples. Mitochondrial markers were found to be superior to nuclear markers for degraded samples. Rnl outperformed the UMD universalÂź (Molyzm) marker in FFPE (71.5% positive samples versus 50%). Spiked blood samples highlighted the potential of rnl as a pan-Mucorales screening test. Fungal burden was reproducibly quantified in murine organs using standard curves. Identification of pure cultures gave a perfect (100%) correlation with the detected internal transcribed spacer (ITS) sequence. In conclusion, mitochondrial genes, such as rnl, provide an alternative to the nuclear 18 S rDNA genes and deserve further evaluation.CD laboratory: This research was funded by the Christian Doppler Laboratory for fungal infections

    100 Hz ROCS microscopy correlated with fluorescence reveals cellular dynamics on different spatiotemporal scales

    Get PDF
    Fluorescence techniques dominate the field of live-cell microscopy, but bleaching and motion blur from too long integration times limit dynamic investigations of small objects. High contrast, label-free life-cell imaging of thousands of acquisitions at 160 nm resolution and 100 Hz is possible by Rotating Coherent Scattering (ROCS) microscopy, where intensity speckle patterns from all azimuthal illumination directions are added up within 10 ms. In combination with fluorescence, we demonstrate the performance of improved Total Internal Reflection (TIR)-ROCS with variable illumination including timescale decomposition and activity mapping at five different examples: millisecond reorganization of macrophage actin cortex structures, fast degranulation and pore opening in mast cells, nanotube dynamics between cardiomyocytes and fibroblasts, thermal noise driven binding behavior of virus-sized particles at cells, and, bacterial lectin dynamics at the cortex of lung cells. Using analysis methods we present here, we decipher how motion blur hides cellular structures and how slow structure motions cover decisive fast motions

    Phytochrome-Based Extracellular Matrix with Reversibly Tunable mechanical Properties

    No full text
    Interrogation and control of cellular fate and function using optogenetics is providing revolutionary insights into biology. Optogenetic control of cells is achieved by coupling genetically encoded photoreceptors to cellular effectors and enables unprecedented spatiotemporal control of signaling processes. Here, a fast and reversibly switchable photoreceptor is used to tune the mechanical properties of polymer materials in a fully reversible, wavelength‐specific, and dose‐ and space‐controlled manner. By integrating engineered cyanobacterial phytochrome 1 into a poly(ethylene glycol) matrix, hydrogel materials responsive to light in the cell‐compatible red/far‐red spectrum are synthesized. These materials are applied to study in human mesenchymal stem cells how different mechanosignaling pathways respond to changing mechanical environments and to control the migration of primary immune cells in 3D. This optogenetics‐inspired matrix allows fundamental questions of how cells react to dynamic mechanical environments to be addressed. Further, remote control of such matrices can create new opportunities for tissue engineering or provide a basis for optically stimulated drug depots
    • 

    corecore