949 research outputs found

    Observations and predictions at CesrTA, and outlook for ILC

    Full text link
    In this paper, we will describe some of the recent experimental measurements [1, 2, 3] performed at CESRTA [4], and the supporting simulations, which probe the interaction of the electron cloud with the stored beam. These experiments have been done over a wide range of beam energies, emittances, bunch currents, and fill patterns, to gather sufficient information to be able to fully characterize the beam-electron-cloud interaction and validate the simulation programs. The range of beam conditions is chosen to be as close as possible to those of the ILC damping ring, so that the validated simulation programs can be used to predict the performance of these rings with regard to electroncloud- related phenomena. Using the new simulation code Synrad3D to simulate the synchrotron radiation environment, a vacuum chamber design has been developed for the ILC damping ring which achieves the required level of photoelectron suppression. To determine the expected electron cloud density in the ring, EC buildup simulations have been done based on the simulated radiation environment and on the expected performance of the ILC damping ring chamber mitigation prescriptions. The expected density has been compared with analytical estimates of the instability threshold, to verify that the ILC damping ring vacuum chamber design is adequate to suppress the electron cloud single-bunch head-tail instability.Comment: 11 pages, contribution to the Joint INFN-CERN-EuCARD-AccNet Workshop on Electron-Cloud Effects: ECLOUD'12; 5-9 Jun 2012, La Biodola, Isola d'Elba, Ital

    Jaminaea phylloscopi sp. Nov. (microstromatales), a basidiomycetous yeast isolated from migratory birds in the mediterranean basin

    Get PDF
    During a survey of yeasts vectored by migratory birds in the Mediterranean basin, isolations from the cloacae of members of the order Passeriformes collected in Ustica (Italy) were performed. Based on phylogenetic analysis of the D1/D2 domain of the 26S rRNA gene and the internal transcribed spacer ITS1-5.8S rRNA gene-ITS2 region, five yeast isolates clustered in a new lineage within the Microstromatales clade. The DNA sequences of these isolates differed from those of their closest relatives, Jaminaea angkorensis and Jaminaea lanaiensis, by 20 and 25 nt substitutions in the D1/D2 domain and 119 and 131 nt substitutions in the complete ITS region, respectively. In addition, the five isolates showed phenotypic characteristics not observed in their closest relatives, such as the ability to grow at 44 °C and at pH 2.5, which suggests a possible adaptation to the bird gastrointestinal tract. On the basis of the isolation source, phenotypic features and molecular strain typing carried out with randomly amplified polymorphic DNA (RAPD)-PCR and mini-satellite-primed (MSP)-PCR analysis, the five isolates were characterized as five distinct strains of a novel species formally described as Jaminaea phylloscopi sp. nov., with 551B6T (=PYCC 6783T=CBS 14087T) as the type strain. The Mycobank accession number is MB811984

    A Combined Experimental and Theoretical Study of Photodouble Ionization of Water at 32 eV Excess Energy and Unequal Energy Sharing

    Get PDF
    In this paper we present a part of our investigation of the photodouble ionization (PDI) of gaseous water. Synchrotron radiation from ELETTRA storage ring was used to ionize the water molecule, and the two emitted electrons were collected in coincidence after angle and energy selection. We have compared the measured dication states with those known from literature and showed the angular distributions of the two photoelectrons measured for the first time, for different excess energies and under different energy sharing conditions. A detailed comparison with theoretical calculations is given to help understand some details of the PDI mechanism.Fil: Penson, Conner. Embry-riddle Aeronautical University; Estados UnidosFil: Turri, Giorgio. Full Sail University; Estados UnidosFil: Avaldi, Lorenzo. Consiglio Nazionale delle Ricerche; ItaliaFil: Randazzo, Juan Martin. Comisión Nacional de Energí­a Atómica. Gerencia del Area Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Balseiro). División Colisiones Atómicas; Argentina. University of Central Florida; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Ancarani, Lorenzo Ugo. Université de Lorraine; FranciaFil: Bolognesi, Paola. Consiglio Nazionale delle Ricerche; Itali

    Sustainable recovery of critical elements from seawater saltworks bitterns by integration of high selective sorbents and reactive precipitation and crystallisation: Developing the probe of concept with on-site produced chemicals and energy

    Get PDF
    The availability of raw mineral resources containing elements included in the Critical Raw Materials (CRMs) list is a growing concern for the European Union. Sea mining has been identified as a promising secondary source. In particular, brines obtained in solar saltworks (bitterns) contain relevant amounts of valuable CRMs such as Mg(II), B(III), other alkaline/alkaline earth metals (Rb(I), Cs(I), Sr(II)) and transition/post-transition elements (Co(II), Ga(III), Ge(IV)). However, the low concentration of some of these elements (µg/L) requires an effort to develop recovery routes that are sustainable and economically feasible where the required chemicals and energy are produced on-site from the saltworks bitterns (i.e. HCl and NaOH). Even the conventional recovery processes such as ion exchange, sorption and precipitation, which have proved to be competitive for metals recovery, are challenged in the case of Trace Elements (TEs). This work studies the recovery of TEs included in the CRMs list from saltworks bitterns after ion exchange processes. First, batch crystallisation and reactive precipitation were tested for some target elements in single-component solutions: Sr(II), Co(II), Ga(III), Ge(IV) and B(III). Then, the experiments were carried out with multi-component synthetic solutions assuming different scenarios of bittern streams coming out a selective extraction stage using sorption and ion exchange processes. The targeted elements were recovered except for Ge(IV), where alternative routes need to be evaluated, as its precipitation involves the use of tannic acid or sulphide solutions that could not be produced from the bitterns. However, a further concentration step would be necessary to achieve element concentrations closer to the mineral phases saturation. Moreover, model simulations were performed using the PHREEQC program, which provided a good prediction of the experimental trends obtained in most cases

    Application of laboratory methods for understanding fish responses to black soldier fly (Hermetia illucens) based diets

    Get PDF
    A major challenge for development of sustainable aquafeeds is its dependence on fish meal and fish oil. Replacement with more sustainable, nutritious and safe ingredients is now a priority. Over the last years, among several alternatives proposed, insects have received great attention as possible candidates. In particular, the black soldier fly (Hermetia illucens; BSF) represents a concrete example of how the circular economy concept can be applied to fish culture, providing a valuable biomass rich in fat and protein valorising organic by-products. In the last decade, several studies have been published about the use of different BSF dietary inclusion levels for various fish species including experimental models. Varying and encouraging results have been obtained in this research field using a plethora of laboratory methodological approaches that can be applied and coupled to obtain a comprehensive view of the BSF-based diets effects on fish physiology, health, and quality. The present review aims to explore some of the most promising laboratory approaches like histology, infrared spectroscopy, gut microbiome sequencing, molecular biology, fish fillets’ physico-chemical and sensory properties, essential for a better understanding of fish welfare and fillet quality, when BSF is used as aquafeed ingredient. In particular, great importance has been given to European finfish species and experimental models.publishedVersio

    Impact of phytosterols on liver and distal colon metabolome in experimental murine colitis model: an explorative study

    Get PDF
    Phytosterols are known to reduce plasma cholesterol levels and thereby reduce cardiovascular risk. Studies conducted on human and animal models have demonstrated that these compounds have also anti-inflammatory effects. Recently, an experimental colitis model (dextran sulphate sodium-induced) has shown that pre-treatment with phytosterols decreases infiltration of inflammatory cells and accelerates mucosal healing. This study aims to understand the mechanism underlying the colitis by analysing the end-products of the metabolism in distal colon and liver excised from the same mice used in the previous work. In particular, an unsupervised gas chromatography-mass spectrometry (GC-MS) and NMR based metabolomics approach was employed to identify the metabolic pathways perturbed by the dextran sodium sulphate (DSS) insult (i.e. Krebs cycle, carbohydrate, amino acids, and nucleotide metabolism). Interestingly, phytosterols were able to restore the homeostatic equilibrium of the hepatic and colonic metabolome

    Effects of different stress parameters on growth and on oleuropein-degrading abilities of lactiplantibacillus plantarum strains selected as tailored starter cultures for naturally table olives

    Get PDF
    The use of β-glucosidase positive strains, as tailored-starter cultures for table olives fermentation, is a useful biotechnological tool applied to accelerate the debittering process. Nowadays, strains belonging to Lactiplantibacillus plantarum species are selected for their high versatility and tolerance to stress conditions. The present study investigated the effect of different stress factors (pH, temperature and NaCl) on growth and on oleuropein-degrading abilities of selected L. plantarum strains. In addition, the presence of the beta-glucosidase gene was investigated by applying a PCR based approach. Results revealed that, overall, the performances of the tested strains appeared to be robust toward the different stressors. However, the temperature of 16 °C significantly affected the growth performance of the strains both singularly and in combination with other stressing factors since it prolongs the latency phase and reduces the maximum growth rate of strains. Similarly, the oleuropein degradation was mainly affected by the low temperature, especially in presence of low salt content. Despite all strains displayed the ability to reduce the oleuropein content, the beta-glucosidase gene was detected in five out of the nine selected strains, demonstrating that the ability to hydrolyze the oleuropein is not closely related to the presence of beta-glucosidase. Data of the present study suggest that is extremely important to test the technological performances of strains at process conditions in order to achieve a good selection of tailored starter cultures for table olives

    Mining minerals and critical raw materials from bittern: Understanding metal ions fate in saltwork ponds

    Get PDF
    Seawater represents a potential resource for raw materials extraction. Although NaCl is the most representative mineral extracted other valuable compounds such as Mg, Li, Sr, Rb and B and elements at trace level (Cs, Co, In, Sc, Ga and Ge) are also contained in this "liquid mine". Most of them are considered as Critical Raw Materials by the European Union. Solar saltworks, providing concentration factors of up-to 20 to 40, offer a perfect platform for the development of minerals and metal recovery schemes taking benefit of the concentration and purification achieved along the evaporation saltwork ponds. However, the geochemistry of these elements in this environment has not been yet thoroughly evaluated. Their knowledge could enable the deployment of technologies capable to achieve the recovery of valuable minerals. The high ionic strengths expected (0.5-7 mol/kg) and the chemical complexity of the solutions imply that only numerical geochemical codes, as PHREEQC, and the use of Pitzer model to estimate the activity coefficients of the different species in solution can be adopted to provide valuable description of the systems. In the present work, for the first time, PHREEQC Pitzer code database was extended to include the target minor and trace elements using Trapani saltworks (Sicily, Italy) as a case study system. The model was able to predict: i) the purity in halite and the major impurities contained, mainly Ca, Mg and sulphate species; ii) the fate of minor components as B, Sr, Cs, Co, Ge and Ga along the evaporation ponds. The results obtained pose a fundamental step in critical raw materials mining from seawater brine, for process intensification and combination with desalination
    corecore