344 research outputs found

    A Life-Cycle Analysis of the Greenhouse Gas Emissions of Corn-Based Ethanol

    Get PDF
    1. Introduction pg. 1 2. Review of the Scientific Papers, Technical Reports, Data Sets, and Other Information that have Become Available Since 2010 and Relate to Current Emissions Levels in Each Emissions Category pg. 9 3. Current GHG Emission Values for Each Emissions Source Category pg. 88 4. Projected GHG LCA Emissions Values for a Business-As-Usual Scenario and a Building-Blocks Scenario for Corn Ethanol in 2022 pg. 15

    A Life-Cycle Analysis of the Greenhouse Gas Emissions of Corn-Based Ethanol

    Get PDF
    1. Introduction pg. 1 2. Review of the Scientific Papers, Technical Reports, Data Sets, and Other Information that have Become Available Since 2010 and Relate to Current Emissions Levels in Each Emissions Category pg. 9 3. Current GHG Emission Values for Each Emissions Source Category pg. 88 4. Projected GHG LCA Emissions Values for a Business-As-Usual Scenario and a Building-Blocks Scenario for Corn Ethanol in 2022 pg. 15

    Novel patterning of nano-bioceramics: template-assisted electrohydrodynamic atomization spraying

    Get PDF
    The ability to create patterns of bioactive nanomaterials particularly on metallic and other types of implant surfaces is a crucial feature in influencing cell response, adhesion and growth. In this report, we uncover and elucidate a novel method that allows the easy deposition of a wide variety of predetermined topographical geometries of nanoparticles of a bioactive material on both metallic and non-metallic surfaces. Using different mesh sizes and geometries of a gold template, hydroxyapatite nanoparticles suspended in ethanol have been electrohydrodynamically sprayed on titanium and glass substrates under carefully designed electric field conditions. Thus, different topographies, e.g. hexagonal, line and square, from hydroxyapatite nanoparticles were created on these substrates. The thickness of the topography can be controlled by varying the spraying time

    Effects of low intensity pulsed ultrasound with and without increased cortical porosity on structural bone allograft incorporation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Though used for over a century, structural bone allografts suffer from a high rate of mechanical failure due to limited graft revitalization even after extended periods <it>in vivo</it>. Novel strategies that aim to improve graft incorporation are lacking but necessary to improve the long-term clinical outcome of patients receiving bone allografts. The current study evaluated the effect of low-intensity pulsed ultrasound (LIPUS), a potent exogenous biophysical stimulus used clinically to accelerate the course of fresh fracture healing, and longitudinal allograft perforations (LAP) as non-invasive therapies to improve revitalization of intercalary allografts in a sheep model.</p> <p>Methods</p> <p>Fifteen skeletally-mature ewes were assigned to five experimental groups based on allograft type and treatment: +CTL, -CTL, LIPUS, LAP, LIPUS+LAP. The +CTL animals (n = 3) received a tibial ostectomy with immediate replacement of the resected autologous graft. The -CTL group (n = 3) received fresh frozen ovine tibial allografts. The +CTL and -CTL groups did not receive LAP or LIPUS treatments. The LIPUS treatment group (n = 3), following grafting with fresh frozen ovine tibial allografts, received ultrasound stimulation for 20 minutes/day, 5 days/week, for the duration of the healing period. The LAP treatment group (n = 3) received fresh frozen ovine allografts with 500 μm longitudinal perforations that extended 10 mm into the graft. The LIPUS+LAP treatment group (n = 3) received both LIPUS and LAP interventions. All animals were humanely euthanized four months following graft transplantation for biomechanical and histological analysis.</p> <p>Results</p> <p>After four months of healing, daily LIPUS stimulation of the host-allograft junctions, alone or in combination with LAP, resulted in 30% increases in reconstruction stiffness, paralleled by significant increases (p < 0.001) in callus maturity and periosteal bridging across the host/allograft interfaces. Longitudinal perforations extending 10 mm into the proximal and distal endplates filled to varying degrees with new appositional bone and significantly accelerated revitalization of the allografts compared to controls.</p> <p>Conclusion</p> <p>The current study has demonstrated in a large animal model the potential of both LIPUS and LAP therapy to improve the degree of allograft incorporation. LAP may provide an option for increasing porosity, and thus potential <it>in vivo </it>osseous apposition and revitalization, without adversely affecting the structural integrity of the graft.</p

    Leveraging the value of conservation physiology for ecological restoration

    Get PDF
    First published: 12 December 2021The incorporation of conservation physiology into environmental management, particularly ecological restoration, is underutilized,despite the capacity of such approaches to discern how populations respond to the challenges of unpredictable and potentially inhospitable environments. We explore several examples where detailed mechanistic understanding of the physiological constraints of keystone and foundational species, ecological service providers such as insect pollinators, and species of conservation concern has been used to optimize the return of these species to landscapes following the cessation of mineral extraction. Using such data can optimize the rapid return of functioning ecosystems during restoration or increase the conservation value of restoration by returning insurance populations of threatened species. Integrating this level of mechanistic understanding with fine-resolution spatial data in the form of biophysical modeling can help plan recovery and identify targets that can subsequently be used in assessing restoration success, particularly in situations that require substantial investment over long periods, such as post-mining restoration.There is growing recognition of the valuable insights offered by conservation physiology to broader practice and policy development, and there have been substantial technical developments in conservation physiology leading up to and into the twenty-first century as a result. The global challenge facing restoration ecology has, however, also grown in that time. Rapidly and efficiently meeting ambitious global restoration objectives will require a targeted approach, and we suggest that the application of physiological data will be most strategic for rare species, keystone species, and ecosystem service providers more broadly.Sean Tomlinson, Emily P. Tudor, Shane R. Turner, Sophie Cross, Fiamma Riviera, Jason Stevens, Justin Valliere, Wolfgang Lewandrowsk

    Restoration ecophysiology: an ecophysiological approach to improve restoration strategies and outcomes in severely disturbed landscapes

    Get PDF
    As human activities destroy and degrade the world's ecosystems at unprecedented scales, there is a growing need for evidence-based methods for ecological restoration if we are to preserve biodiversity and ecosystem services. Mining represents one of the most severe anthropogenic disturbances, often necessitating intensive intervention to restore the most basic attributes of native ecosystems. Despite examples of successful mine-site restoration, re-establishing native vegetation in these degraded landscapes remains a significant challenge. Plant ecophysiology-the study of the interactions between plants and the environment-can provide a useful framework for evaluating and guiding mine-site restoration. By understanding the physiological mechanisms that allow plants to establish and persist in these highly disturbed environments, practitioners may be able to improve restoration outcomes. Specifically, methods in plant ecophysiology can inform site preparation and the selection of plant material for restoration projects, aid in monitoring restoration progress by providing additional insight into plant performance, and ultimately improve our ability to predict restoration trajectories. Here, we review the challenges and benefits of integrating an ecophysiological perspective to mine-site restoration in Western Australia, a global hotspot of biodiversity and mining operations. Using case studies and examples from the region's diverse ecosystems, we illustrate how an ecophysiological approach can guide the restoration of some of the world's most severely disturbed landscapes. With careful selection of study species and traits and consideration of the specific environmental conditions and stressors within a site, the restoration ecophysiology framework outlined here has the potential to inform restoration strategies across ecosystems

    Can a Point-of-Care Troponin I Assay be as Good as a Central Laboratory Assay? A MIDAS Investigation.

    Get PDF
    BACKGROUND: We aimed to compare the diagnostic accuracy of the Alere Triage Cardio3 Tropinin I (TnI) assay (Alere, Inc., USA) and the PathFast cTnI-II (Mitsubishi Chemical Medience Corporation, Japan) against the central laboratory assay Singulex Erenna TnI assay (Singulex, USA). METHODS: Using the Markers in the Diagnosis of Acute Coronary Syndromes (MIDAS) study population, we evaluated the ability of three different assays to identify patients with acute myocardial infarction (AMI). The MIDAS dataset, described elsewhere, is a prospective multicenter dataset of emergency department (ED) patients with suspected acute coronary syndrome (ACS) and a planned objective myocardial perfusion evaluation. Myocardial infarction (MI) was diagnosed by central adjudication. RESULTS: The C-statistic with 95% confidence intervals (CI) for diagnosing MI by using a common population (n=241) was 0.95 (0.91-0.99), 0.95 (0.91-0.99), and 0.93 (0.89-0.97) for the Triage, Singulex, and PathFast assays, respectively. Of samples with detectable troponin, the absolute values had high Pearson (R(P)) and Spearman (R(S)) correlations and were R(P)=0.94 and R(S)=0.94 for Triage vs Singulex, R(P)=0.93 and R(S)=0.85 for Triage vs PathFast, and R(P)=0.89 and R(S)=0.73 for PathFast vs Singulex. CONCLUSIONS: In a single comparative population of ED patients with suspected ACS, the Triage Cardio3 TnI, PathFast, and Singulex TnI assays provided similar diagnostic performance for MI

    A research agenda for seed-trait functional ecology

    Get PDF
    Trait-based approaches have improved our understanding of plant evolution, community assembly and ecosystem functioning. A major challenge for the upcoming decades is to understand the functions and evolution of early life-history traits, across levels of organization and ecological strategies. Although a variety of seed traits are critical for dispersal, persistence, germination timing and seedling establishment, only seed mass has been considered systematically. Here we suggest broadening the range of morphological, physiological and biochemical seed traits to add new understanding on plant niches, population dynamics and community assembly. The diversity of seed traits and functions provides an important challenge that will require international collaboration in three areas of research. First, we present a conceptual framework for a seed ecological spectrum that builds upon current understanding of plant niches. We then lay the foundation for a seed-trait functional network, the establishment of which will underpin and facilitate trait-based inferences. Finally, we anticipate novel insights and challenges associated with incorporating diverse seed traits into predictive evolutionary ecology, community ecology and applied ecology. If the community invests in standardized seed-trait collection and the implementation of rigorous databases, major strides can be made at this exciting frontier of functional ecology
    corecore