170 research outputs found

    A new terrestrial palaeoenvironmental record from the Bering Land Bridge and context for human dispersal

    Get PDF
    Palaeoenvironmental records from the now-submerged Bering Land Bridge (BLB) covering the Last Glacial Maximum (LGM) to the present are needed to document changing environments and connections with the dispersal of humans into North America. Moreover, terrestrially based records of environmental changes are needed in close proximity to the re-establishment of circulation between Pacific and Atlantic Oceans following the end of the last glaciation to test palaeo-climate models for the high latitudes. We present the first terrestrial temperature and hydrologic reconstructions from the LGM to the present from the BLB’s south-central margin. We find that the timing of the earliest unequivocal human dispersals into Alaska, based on archaeological evidence, corresponds with a shift to warmer/wetter conditions on the BLB between 14 700 and 13 500 years ago associated with the early Bølling/Allerød interstadial (BA). These environmental changes could have provided the impetus for eastward human dispersal at that time, from Western or central Beringia after a protracted human population standstill. Our data indicate substantial climate-induced environmental changes on the BLB since the LGM, which would potentially have had significant influences on megafaunal and human biogeography in the region. © 2018 The Authors

    DHODH modulates transcriptional elongation in the neural crest and melanoma

    Get PDF
    Melanoma is a tumour of transformed melanocytes, which are originally derived from the embryonic neural crest. It is unknown to what extent the programs that regulate neural crest development interact with mutations in the BRAF oncogene, which is the most commonly mutated gene in human melanoma1. We have used zebrafish embryos to identify the initiating transcriptional events that occur on activation of human BRAF(V600E) (which encodes an amino acid substitution mutant of BRAF) in the neural crest lineage. Zebrafish embryos that are transgenic for mitfa:BRAF(V600E) and lack p53 (also known as tp53) have a gene signature that is enriched for markers of multipotent neural crest cells, and neural crest progenitors from these embryos fail to terminally differentiate. To determine whether these early transcriptional events are important for melanoma pathogenesis, we performed a chemical genetic screen to identify small-molecule suppressors of the neural crest lineage, which were then tested for their effects on melanoma. One class of compound, inhibitors of dihydroorotate dehydrogenase (DHODH), for example leflunomide, led to an almost complete abrogation of neural crest development in zebrafish and to a reduction in the self-renewal of mammalian neural crest stem cells. Leflunomide exerts these effects by inhibiting the transcriptional elongation of genes that are required for neural crest development and melanoma growth. When used alone or in combination with a specific inhibitor of the BRAF(V600E) oncogene, DHODH inhibition led to a marked decrease in melanoma growth both in vitro and in mouse xenograft studies. Taken together, these studies highlight developmental pathways in neural crest cells that have a direct bearing on melanoma formation

    A new terrestrial palaeoenvironmental record from the Bering Land Bridge and context for human dispersal

    Get PDF
    © 2018 The Authors. Palaeoenvironmental records from the now-submerged Bering Land Bridge (BLB) covering the Last Glacial Maximum (LGM) to the present are needed to document changing environments and connections with the dispersal of humans into North America. Moreover, terrestrially based records of environmental changes are needed in close proximity to the re-establishment of circulation between Pacific and Atlantic Oceans following the end of the last glaciation to test palaeo-climate models for the high latitudes. We present the first terrestrial temperature and hydrologic reconstructions from the LGM to the present from the BLB’s south-central margin. We find that the timing of the earliest unequivocal human dispersals into Alaska, based on archaeological evidence, corresponds with a shift to warmer/wetter conditions on the BLB between 14 700 and 13 500 years ago associated with the early Bølling/Allerød interstadial (BA). These environmental changes could have provided the impetus for eastward human dispersal at that time, from Western or central Beringia after a protracted human population standstill. Our data indicate substantial climate-induced environmental changes on the BLB since the LGM, which would potentially have had significant influences on megafaunal and human biogeography in the region

    Belief Revision and Delusions: How Do Patients with Schizophrenia Take Advice?

    Get PDF
    The dominant cognitive model that accounts for the persistence of delusional beliefs in schizophrenia postulates that patients suffer from a general deficit in belief revision. It is generally assumed that this deficit is a consequence of impaired reasoning skills. However, the possibility that such inflexibility affects the entire system of a patient's beliefs has rarely been empirically tested. Using delusion-neutral material in a well-documented advice-taking task, the present study reports that patients with schizophrenia: 1) revise their beliefs, 2) take into account socially provided information to do so, 3) are not overconfident about their judgments, and 4) show less egocentric advice-discounting than controls. This study thus shows that delusional patients' difficulty in revising beliefs is more selective than had been previously assumed. The specificities of the task and the implications for a theory of delusion formation are discussed

    The “Flexi-Chamber”: A Novel Cost-Effective In Situ Respirometry Chamber for Coral Physiological Measurements

    Get PDF
    Coral reefs are threatened worldwide, with environmental stressors increasingly affecting the ability of reef-building corals to sustain growth from calcification (G), photosynthesis (P) and respiration (R). These processes support the foundation of coral reefs by directly influencing biogeochemical nutrient cycles and complex ecological interactions and therefore represent key knowledge required for effective reef management. However, metabolic rates are not trivial to quantify and typically rely on the use of cumbersome in situ respirometry chambers and/or the need to remove material and examine ex situ, thereby fundamentally limiting the scale, resolution and possibly the accuracy of the rate data. Here we describe a novel low-cost in situ respirometry bag that mitigates many constraints of traditional glass and plexi-glass incubation chambers. We subsequently demonstrate the effectiveness of our novel "Flexi-Chamber" approach via two case studies: 1) the Flexi-Chamber provides values of P, R and G for the reef-building coral Siderastrea cf. stellata collected from reefs close to Salvador, Brazil, which were statistically similar to values collected from a traditional glass respirometry vessel; and 2) wide-scale application of obtaining P, R and G rates for different species across different habitats to obtain inter- and intra-species differences. Our novel cost-effective design allows us to increase sampling scale of metabolic rate measurements in situ without the need for destructive sampling and thus significantly expands on existing research potential, not only for corals as we have demonstrated here, but also other important benthic groups

    Sensitivity of Calcification to Thermal Stress Varies among Genera of Massive Reef-Building Corals

    Get PDF
    Reductions in calcification in reef-building corals occur when thermal conditions are suboptimal, but it is unclear how they vary between genera in response to the same thermal stress event. Using densitometry techniques, we investigate reductions in the calcification rate of massive Porites spp. from the Great Barrier Reef (GBR), and P. astreoides, Montastraea faveolata, and M. franksi from the Mesoamerican Barrier Reef (MBR), and correlate them to thermal stress associated with ocean warming. Results show that Porites spp. are more sensitive to increasing temperature than Montastraea, with calcification rates decreasing by 0.40 g cm−2 year−1 in Porites spp. and 0.12 g cm−2 year−1 in Montastraea spp. for each 1°C increase. Under similar warming trends, the predicted calcification rates at 2100 are close to zero in Porites spp. and reduced by 40% in Montastraea spp. However, these predictions do not account for ocean acidification. Although yearly mean aragonite saturation (Ωar) at MBR sites has recently decreased, only P. astreoides at Chinchorro showed a reduction in calcification. In corals at the other sites calcification did not change, indicating there was no widespread effect of Ωar changes on coral calcification rate in the MBR. Even in the absence of ocean acidification, differential reductions in calcification between Porites spp. and Montastraea spp. associated with warming might be expected to have significant ecological repercussions. For instance, Porites spp. invest increased calcification in extension, and under warming scenarios it may reduce their ability to compete for space. As a consequence, shifts in taxonomic composition would be expected in Indo-Pacific reefs with uncertain repercussions for biodiversity. By contrast, Montastraea spp. use their increased calcification resources to construct denser skeletons. Reductions in calcification would therefore make them more susceptible to both physical and biological breakdown, seriously affecting ecosystem function in Atlantic reefs
    corecore