47 research outputs found

    Role of CCL3L1-CCR5 Genotypes in the Epidemic Spread of HIV-1 and Evaluation of Vaccine Efficacy

    Get PDF
    Polymorphisms in CCR5, the major coreceptor for HIV, and CCL3L1, a potent CCR5 ligand and HIV-suppressive chemokine, are determinants of HIV-AIDS susceptibility. Here, we mathematically modeled the potential impact of these genetic factors on the epidemic spread of HIV, as well as on its prevention.Ro, the basic reproductive number, is a fundamental concept in explaining the emergence and persistence of epidemics. By modeling sexual transmission among HIV+/HIV- partner pairs, we find that Ro estimates, and concordantly, the temporal and spatial patterns of HIV outgrowth are highly dependent on the infecting partners' CCL3L1-CCR5 genotype. Ro was least and highest when the infected partner possessed protective and detrimental CCL3L1-CCR5 genotypes, respectively. The modeling data indicate that in populations such as Pygmies with a high CCL3L1 gene dose and protective CCR5 genotypes, the spread of HIV might be minimal. Additionally, Pc, the critical vaccination proportion, an estimate of the fraction of the population that must be vaccinated successfully to eradicate an epidemic was <1 only when the infected partner had a protective CCL3L1-CCR5 genotype. Since in practice Pc cannot be >1, to prevent epidemic spread, population groups defined by specific CCL3L1-CCR5 genotypes might require repeated vaccination, or as our models suggest, a vaccine with an efficacy of >70%. Further, failure to account for CCL3L1-CCR5-based genetic risk might confound estimates of vaccine efficacy. For example, in a modeled trial of 500 subjects, misallocation of CCL3L1-CCR5 genotype of only 25 (5%) subjects between placebo and vaccine arms results in a relative error of approximately 12% from the true vaccine efficacy.CCL3L1-CCR5 genotypes may impact on the dynamics of the HIV epidemic and, consequently, the observed heterogeneous global distribution of HIV infection. As Ro is lowest when the infecting partner has beneficial CCL3L1-CCR5 genotypes, we infer that therapeutic vaccines directed towards reducing the infectivity of the host may play a role in halting epidemic spread. Further, CCL3L1-CCR5 genotype may provide critical guidance for optimizing the design and evaluation of HIV-1 vaccine trials and prevention programs

    Decision threshold associated with multiple measurements. Application to the synthesis of the environment monitoring results

    No full text
    When the sample activity is measured for various reasons several times, then with each measurement can be associated an individual decision threshold and limit of detection. Each measurement can be analyzed through its own decision threshold. The whole measurements can sometimes present contradictory results, some measurements being lower than the decision threshold and other higher. The problem then arises to build a decision threshold and a detection limit taking into account all the individual results, and to decide if the radioactivity is finally detected or not. It is interesting to note that it is possible sometimes that the decision threshold taking account all results makes it possible to decide that the radioactivity is present whereas the totality of the individual results are negative in terms of individual decision threshold. The purpose of this article is to show how these thresholds and these coherent limits cumulated can be determined in way according to the experimental conditions. In a general way a rigorous method of cumulating makes it possible to systematically decrease the decision threshold and limit of detection in terms of activity. This approach has interesting applications in gamma spectrometry with multi-emitters, discharge or periodical environmental measurements. On the basis of measurements realized by the IRSN within the framework of the national monitoring of the environment, we will see the potential impact of these methods on the final assessments

    Övningar i ekonomistyrning - översättningen av företagsmetoder till den offentliga sektorn

    No full text
    Multilocus genotyping of microbial pathogens has revealed a range of population structures, with some bacteria showing extensive recombination and others showing almost complete clonality. The population structure of the protozoan parasite Plasmodium falciparum has been harder to evaluate, since most studies have used a limited number of antigen-encoding loci that are known to be under strong selection. We describe length variation at 12 microsatellite loci in 465 infections collected from 9 locations worldwide. These data reveal dramatic differences in parasite population structure in different locations. Strong linkage disequilibrium (LD) was observed in six of nine populations. Significant LD occurred in all locations with prevalence <1% and in only two of five of the populations from regions with higher transmission intensities. Where present, LD results largely from the presence of identical multilocus genotypes within populations, suggesting high levels of self-fertilization in populations with low levels of transmission. We also observed dramatic variation in diversity and geographical differentiation in different regions. Mean heterozygosities in South American countries (0.3-0.4) were less than half those observed in African locations (0.76-0.8), with intermediate heterozygosities in the Southeast Asia/Pacific samples (0.51-0.65). Furthermore, variation was distributed among locations in South America (F-ST = 0.364) and within locations in Africa (F-ST = 0.007). The intraspecific patterns of diversity and genetic differentiation observed in P. falciparum are strikingly similar to those seen in interspecific comparisons of plants and animals with differing levels of outcrossing, suggesting that similar processes may be involved. The differences observed may also reflect the recent colonization of non-African populations from an African source, and the relative influences of epidemiology and population history are difficult to disentangle. These data reveal a range of population structures within a single pathogen species and suggest intimate links between patterns of epidemiology and genetic structure in this organism

    Microsatellite markers reveal a spectrum of population structures in the malaria parasite Plasmodium falciparum

    No full text
    Multilocus genotyping of microbial pathogens has revealed a range of population structures, with some bacteria showing extensive recombination and others showing almost complete clonality. The population structure of the protozoan parasite Plasmodium falciparum has been harder to evaluate, since most studies have used a limited number of antigen-encoding loci that are known to be under strong selection. We describe length variation at 12 microsatellite loci in 465 infections collected from 9 locations worldwide. These data reveal dramatic differences in parasite population structure in different locations. Strong linkage disequilibrium (LD) was observed in six of nine populations. Significant LD occurred in all locations with prevalence <1% and in only two of five of the populations from regions with higher transmission intensities. Where present, LD results largely from the presence of identical multilocus genotypes within populations, suggesting high levels of self-fertilization in populations with low levels of transmission. We also observed dramatic variation in diversity and geographical differentiation in different regions. Mean heterozygosities in South American countries (0.3-0.4) were less than half those observed in African locations (0.76-0.8), with intermediate heterozygosities in the Southeast Asia/Pacific samples (0.51-0.65). Furthermore, variation was distributed among locations in South America (F-ST = 0.364) and within locations in Africa (F-ST = 0.007). The intraspecific patterns of diversity and genetic differentiation observed in P. falciparum are strikingly similar to those seen in interspecific comparisons of plants and animals with differing levels of outcrossing, suggesting that similar processes may be involved. The differences observed may also reflect the recent colonization of non-African populations from an African source, and the relative influences of epidemiology and population history are difficult to disentangle. These data reveal a range of population structures within a single pathogen species and suggest intimate links between patterns of epidemiology and genetic structure in this organism

    A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes

    No full text
    Metagenomics, or sequencing of the genetic material from a complete microbial community, is a promising tool to discover novel microbes and viruses. Viral metagenomes typically contain many unknown sequences. Here we describe the discovery of a previously unidentified bacteriophage present in the majority of published human faecal metagenomes, which we refer to as crAssphage. Its ~97 kbp genome is six times more abundant in publicly available metagenomes than all other known phages together; it comprises up to 90% and 22% of all reads in virus-like particle (VLP)-derived metagenomes and total community metagenomes, respectively; and it totals 1.68% of all human faecal metagenomic sequencing reads in the public databases. The majority of crAssphage-encoded proteins match no known sequences in the database, which is why it was not detected before. Using a new co-occurrence profiling approach, we predict a Bacteroides host for this phage, consistent with Bacteroides-related protein homologues and a unique carbohydrate-binding domain encoded in the phage genome
    corecore