768 research outputs found
Optical guiding in meter-scale plasma waveguides
We demonstrate a new highly tunable technique for generating meter-scale low
density plasma waveguides. Such guides can enable electron acceleration to tens
of GeV in a single stage. Plasma waveguides are imprinted in hydrogen gas by
optical field ionization induced by two time-separated Bessel beam pulses: The
first pulse, a J_0 beam, generates the core of the waveguide, while the delayed
second pulse, here a J_8 or J_16 beam, generates the waveguide cladding. We
demonstrate guiding of intense laser pulses over hundreds of Rayleigh lengths
with on axis plasma densities as low as N_e0=5x10^16 cm^-3
Solving variational inequalities defined on a domain with infinitely many linear constraints
We study a variational inequality problem whose domain is defined by infinitely many linear inequalities. A discretization method and an analytic center based inexact cutting plane method are proposed. Under proper assumptions, the convergence results for both methods are given. We also provide numerical examples to illustrate the proposed method
The camera of the fifth H.E.S.S. telescope. Part I: System description
In July 2012, as the four ground-based gamma-ray telescopes of the H.E.S.S.
(High Energy Stereoscopic System) array reached their tenth year of operation
in Khomas Highlands, Namibia, a fifth telescope took its first data as part of
the system. This new Cherenkov detector, comprising a 614.5 m^2 reflector with
a highly pixelized camera in its focal plane, improves the sensitivity of the
current array by a factor two and extends its energy domain down to a few tens
of GeV.
The present part I of the paper gives a detailed description of the fifth
H.E.S.S. telescope's camera, presenting the details of both the hardware and
the software, emphasizing the main improvements as compared to previous
H.E.S.S. camera technology.Comment: 16 pages, 13 figures, accepted for publication in NIM
Coupling climate and economic models in a cost-benefit framework: a convex optimization approach
In this paper we present a general method, based on a convex optimisation technique, that facilitates the coupling of climate and economic models in a cost-benefit framework. As a demonstration of the method, we couple an economic growth model à la Ramsey adapted from DICE-99 with an efficient intermediate complexity climate model, C-GOLDSTEIN, which has highly simplified physics, but fully 3-D ocean dynamics. As in DICE-99 we assume that an economic cost is associated with global temperature change: this change is obtained from the climate model which is driven by the GHG concentrations computed from the economic growth path. The work extends a previous paper in which these models were coupled in cost-effectiveness mode. Here we consider the more intricate cost-benefit coupling in which the climate impact is not fixed a priori. We implement the coupled model using an oracle-based optimisation technique. Each model is contained in an oracle which supplies model output and information on its sensitivity to a master program. The algorithm Proximal-ACCPM guarantees the convergence of the procedure under sufficient convexity assumptions. Our results demonstrate the possibility of a consistent, cost-benefit, climate-damage optimisation analysis with a 3-D climate model
Update on cervical disc arthroplasty: where are we and where are we going?
Despite the very good results of anterior cervical discectomy and fusion, there are concerns of adjacent level degeneration. For this reason, interest has grown in the potential for motion sparing alternatives. Cervical disc arthroplasty is thus evolving as a potential alternative to fusion. Specific design characteristic and implants will be reviewed and outcomes summarized
Rapid and Sustained Long-Term Efficacy and Safety of Canakinumab in Patients With Cryopyrin-Associated Periodic Syndrome Ages Five Years and Younger.
To assess long-term efficacy and safety of canakinumab and the response to vaccination in children ages ≤5 years with cryopyrin-associated periodic syndrome (CAPS).
CAPS patients (ages ≤5 years) received 2 mg/kg canakinumab subcutaneously every 8 weeks; patients with neonatal-onset multisystem inflammatory disease (NOMID) received a starting dose of 4 mg/kg in this open-label trial. Efficacy was evaluated using physician global assessment of disease activity and serum levels of C-reactive protein (CRP) and amyloid A (SAA). Adverse events (AEs) were recorded. Vaccination response was evaluated using postvaccination antibody titers at 4 and 8 weeks after immunization.
Of the 17 patients enrolled, 12 (71%) had Muckle-Wells syndrome, 4 (24%) had NOMID, and 1 (6%) had familial cold autoinflammatory syndrome. All 17 patients had a complete response to canakinumab. Disease activity improved according to the physician global assessment, and for 65% of the patients autoinflammatory disease was characterized as "absent" at the end of the study. Median CRP levels decreased over time. No such change was evident in SAA levels. During the extension study, postvaccination antibody titers increased above protective levels in 16 (94%) of 17 assessable vaccinations. Ten of the patients (59%) had AEs suspected to be related to canakinumab; 8 (47%) experienced at least 1 serious AE (SAE). None of the AEs or SAEs required interruption of canakinumab therapy.
Our findings indicate that canakinumab effectively maintains efficacy through 152 weeks and appears to have no effect on the ability to produce antibodies against standard childhood non-live vaccines. The safety profile of canakinumab was consistent with previous studies, supporting long-term use of canakinumab for CAPS in children ≤5 years of age
Apresentando alguns aspectos históricos do desenvolvimento da lógica clássica, ciência das idéias e dos processos da mente
Lógica é a ciência que tem por objeto determinar,
entre as operações intelectuais orientadas para o
conhecimento da verdade, as que são válidas e as que não
são. Estuda os processos e as condições de verdade de todo
e qualquer raciocínio. O conhecimento só é científico
quando, além de universal, é metódico e sistemático, ou
seja, lógico. Assim, a lógica se entende como método, ou
caminho que as ciências trilham para determinar e conhecer
seu objeto, e como característica geral do conhecimento
científico
- …