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ABSTRACT 

Understanding the pressure distribution on round crested weir can help to improve their design. In this frame, 

we propose a finite difference method for irrotational flows. Our method, based on a previous work, determines 

the free surface iteratively. For best results, the computation of the velocity at the free surface is done by a bi-

dimensional function fitting. Knowing the velocity, the elevation and a reference energy level, the pressure can 

be derived. The evolution path is determined by numerical derivatives of the pressure at the surface. The 

iterative method is tested on a subcritical flow. The pressure computation is compared to experimental 

measurements of the pressure on a spillway crest (trans-critical flow). Both results are very encouraging: the 

free surface moves smoothly to an equilibrium state and the pressure on the structure is very close to 

experiment. For this last point, the method is also able to faithfully reproduce pressure drops. 

Keywords: Finite difference, Spillway, free surface, potential flow 

1. INTRODUCTION

Spillways are important structures that should provide sufficient safety during flood events. Understanding their 

behavior for discharges higher than design ones is a key point for innovative design and safer structures. To do 

so, experimental and numerical investigations should be led in parallel for collecting specific information about 

these structures. This paper focuses on the implementation of a new numerical method that aims to determine 

quickly the free surface position, velocity and pressure fields for trans-critical flows. 

In hydraulics, the Finite Volumes Method (FVM) is traditionally used to simulate free-surface flows. However it 

doesn’t allow to compute directly the pressure on the structure due to the assumptions directly linked to this 

method. Numerical methods such as Finite Elements (FE) (Chatila & Tabbara 2004), Smoothed Particle 

Hydrodynamics (SPH) (Goffin 2013; Goffin et al. 2016; Lodomez 2014; Lodomez et al. 2014) and Particle 

Finite Elements (PFEM) (Larese et al. 2008) implemented in 3-D or 2-D vertical slices can handle flows over 

round crested weirs with information about the pressure on the structure. However they require a large amount 

of computing resources in order to handle accurately the flow pattern at the interface with the structure. For 

ordinary desktop computers, a computation for a single discharge may reach several hours. Thus, optimizing a 

weir profile would require too many time with such methods. 

A need for simpler and quicker methods is obvious. Castro-Orgaz (2013) solves the problem using a potential 

flow assumption. Equations are solved in the non-physical  ,x , where x is the horizontal direction and  the

stream function. A more natural way would be to express the problem in the physical spatial plane (x, z). The 

method presented in this paper enhances the one introduced in Goffin et al. (2014) where the potential flow is 

solved in a physical plane  ,x z . First, improvements from Goffin et al. (2014) method will be presented. Then,

test cases and practical examples are explained for a bump and a flow over a round crested weir. 

2. NUMERICAL METHOD

The method developed here is based on the assumption that the flow is irrotational. This was proved by 

Escande (1937) for flows over spillways. The Laplacian 
2  of the potential   or the stream function   

can be solved in such cases. The resulting field, once derived, yields to a velocity field. 



 

Thanks to the energy conservation principle, the pressure p at a given point can be deduced for a given energy 

level E : 
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where z is the altitude,   the density, g  the acceleration of gravity and u  the velocity vector. 

 

The domain is discretized by using the finite difference approach. Irregular nodes are created at boundaries in 

order to represent accurately their geometry. Irregular nodes result from the intersection between the boundary 

contour and the grid lines. Regular nodes are created at the intersection of grid lines for the inner domain. An 

example of discretization is depicted in Figure 1. 

 

 

Figure 1: Schematic discretization of the computation domain 

2.1. First approach and drawbacks 

In Goffin et al. (2014), the Laplacian solved was based on the potential : 
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This approach required to impose Neumann boundary conditions (BC), i.e. the value of a derivative is imposed 

at the boundary, for free surface and impervious boundaries. This was achieved by using the Green-Gauss 

theorem to compute derivatives at these boundaries. It led to a good approximation of the velocity at the 

boundary but some oscillations could be observed. 

 

Determining the free surface requires iterations on the position of free surface nodes. This was done thanks to an 

approach based on curvilinear coordinates developments (Stilmant et al. 2013). The evolution of the pressure 

with the water depth /dp dH  was linked to properties related to curvilinear cross sections and velocity profiles. 

The evolution of depth for each surface node H  was given by 
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with   a relaxation coefficient. The derivative at the denominator is close to zero in the region of the critical 

section. This led to some instabilities in that area. 

 

Main drawbacks of this method included: 

 Oscillations due the velocity evaluation at boundaries 

 Instabilities near the critical section 

 Pressure evaluation at the free surface could present oscillations due to the velocity evaluation 



 

2.2. New approach 

The new approach described in this section aims to reduce previous method problems. The first problem that 

was tackled is the evaluation of velocity at boundaries. To do so, The Laplacian is now solved for the stream 

function   : 
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Only Dirichlet BC are now required which avoids to use a Green-Gauss derivative evaluation (Goffin et al. 

2014) which led to approximations at the boundary. Velocities computed on the outer limits should be more 

accurate now using an imposed value for the unknown. 

 

The second derivative is discretized according to a finite difference scheme on an irregular grid (see Figure 2): 
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Where 
ka  are relative to horizontal distances and 

kb  are relative to vertical distances between nodes. 

 

 

Figure 2 : Discretization scheme for a horizontal second derivative 

 

When distances between nodes are equal, the discretization scheme has second order precision, while it is first 

order when nodes are not regularly spaced (Hirsch 2007). 

 

After the computation of a given state, the velocities are evaluated for the inner nodes as a derivative of the 

stream function: 
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These derivatives are evaluated thanks to centered finite differences. For the nodes located on the boundaries, 

velocities are computed thanks to an interpolation from inner nodes. For a given boundary node, inner neighbors 

within a radius r are considered. The value  
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is computed for each of these nodes. Then, a bi-dimensional function is fitted by least squares on this set of 

points: 
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When coefficients 
ic  are determined, the value f of equation (7) can be computed using (8) for the boundary 

node. This method avoids velocity discontinuities at boundaries. Then, the pressure can be determined by means 

of (1) and a reference energy level E. 



 

 

The approach adopted here for the free surface evolution is different from the previous paper. It is based on a 

Taylor development, second order accurate:  
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First, a classical Newton-Raphson approach (first order accurate) (Ypma 1995) is implemented by using only 

the first derivative:  
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Obviously, it can lead to indeterminate solution if / 0dp dH  . This is the case at the critical section. Nodes 

close to it are subject to large displacements since the pressure derivative is close to 0. 

 

In order to avoid too large displacements of the free surface, a relaxing factor was used to limit displacements to 

a tenth of the discretization step. This relaxing factor was applied for the whole free surface. 

 

Compared to a classical Newton-Raphson iteration scheme, solving the quadratic function (9) avoids to have 

infinite z  since a second derivative is present. Equation (9) can be solved to find z  that should be applied to 

free surface nodes: 
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The first root (+) was found to be the solution for supercritical flows and the second root (-) was found to be the 

one for subcritical flows. 

 

In equations (10) and (11), first and second derivatives are evaluated numerically. Traditionally, this would 

require moving each node independently, leading to a large amount of intermediate computations. The method 

chosen in this approach is hybrid and consists in moving vertically the whole free surface by an increment  . 

Derivatives are computed by moving the free surface upward and downward: 
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For subcritical and supercritical flows, the energy level and the pressure to reach are given as parameters. When 

the flow is transcritical, the energy level is set by the critical section (Castro-Orgaz & Montes 2015). This 

critical section tends to minimize the specific energy of the flow. The critical section can be determined by 

spotting the section were / 0dp dH   and where the specific energy is minimized. Since the total energy of the 

flow is set by the user, the pressure at the critical section represents the target pressure that all nodes has to 

reach, which is 1ip   in (10) and (11). 

3. TEST CASE 

The test case in this section show first results of the currently implemented method for a subcritical flow on a 

bump. The bump has equation  20.3 1 x  in the range  1;1  m. In the range    5; 1 1;5    m, the bottom is 



 

flat and at the altitude 0 m. The domain is discretized with a fine 22 mm² grid in order to concentrate on the 

results of the iterative method and not on the effects linked to a rough discretization. 

 

The initial condition is a horizontal free surface set at 0.47 m. The target pressure is 0 m and the energy level is 

imposed at 0.4723 m. An analytical solution was computed. It considers a uniform vertical velocity profile and 

the energy is conserved on all free surface points. Given the energy conservation equation (1), a water level can 

be derived. The uniform vertical velocity profile assumption is not in total agreement with the model 

implemented here. Some differences may be noticed. The velocity and pressure on the free surface were 

computed according to the fit of function (8) and neighbors were taken in a radius 8r x  . The problem was 

solved with equation (10) leading to results given in Figure 3 where the initial condition as well as the final 

solution obtained by the model are depicted. 

 

It can be seen that the free surface resulting from the computation fits closely the analytical solution in shape 

and in values. However, this analytical solution is computed for a uniform velocity profile, which is not 

representative above the bump. This inconsistence can be noticed in the rightmost plot in Figure 3. 

 

These encouraging results show that this method is able to move a free surface. It should also be tested on 

different flow regimes. 

 

 

Figure 3: Free surface position for a subcritical flow over a bump 

4. PRESSURE PROFILE ON A ROUND CRESTED WEIR 

Once a free surface profile is determined, velocity fields and pressure fields can be computed. This section is 

focusing on the determination of the pressure on the structure with a free surface profile measured 

experimentally. 

 

An experimental campaign was led about pressure diagrams on WES (USACE 1987) round crested weir for 

high head ratios ( / dH H ), with a design head Hd = 15 cm. Numerical simulations were led for a domain 

spreading from the reservoir to the spillway itself. Results shown in Figure 4 were computed for 2/ dH H   

and are focusing only on the weir crest. Very good agreement between experimental measures and numerical 

results can be observed. This figure shows that the method implemented is able to faithfully reproduce the 

pressure on a weir crest. Even pressure drops can be reproduced with a high level of fidelity. 

 



 

 

Figure 4: Comparison between experimental measurements and numerical computation of the pressure on a 

WES weir crest 

5. CONCLUSIONS 

In this paper, we presented an original method which goal is to determine the free surface profile of irrotational 

flows. This work was based on first developments presented in Goffin et al. (2014). Improvements were 

presented in order to reduce drawbacks noticed in the previous approach. 

 

The Newton-Raphson scheme was successfully tested on a subcritical flow over a bump. A more advanced 

method was also proposed in order to deal with transcritical flows. 

 

With a given free surface, the method showed that it was able to faithfully reproduce the pressure diagram on a 

round crested weir. 

 

Further developments should focus on transcritical flows and the critical section issue. In this frame the second 

order method should bring benefits. 
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