2,530 research outputs found

    Kilohertz QPOs in Neutron Star Binaries modeled as Keplerian Oscillations in a Rotating Frame of Reference

    Get PDF
    Since the discovery of kHz quasi-periodic oscillations (QPO) in neutron star binaries, the difference between peak frequencies of two modes in the upper part of the spectrum, i.e. Delta (omega)=omega_h-omega_K has been studied extensively. The idea that the difference Delta(omega) is constant and (as a beat frequency) is related to the rotational frequency of the neutron star has been tested previously. The observed decrease of Delta(omega) when omega_h and omega_k increase has weakened the beat frequency interpretation. We put forward a different paradigm: a Keplerian oscillator under the influence of the Coriolis force. For such an oscillator, omega_h and the assumed Keplerian frequency omega_k hold an upper hybrid frequency relation: omega^2_h-omega^2_K=4*Omega^2, where Omega is the rotational frequency of the star's magnetosphere near the equatorial plane. For three sources (Sco X-1, 4U 1608-52 and 4U 1702-429), we demonstrate that the solid body rotation Omega=Omega_0=const. is a good first order approximation. Within the second order approximation, the slow variation of Omega as a function of omega_K reveals the structure of the magnetospheric differential rotation. For Sco X-1, the QPO have frequencies approximately 45 and 90 Hz which we interpret as the 1st and 2nd harmonics of the lower branch of the Keplerian oscillations for the rotator with vector Omega not aligned with the normal of the disk: omega_L/2 pi=(Omega/pi)(omega_K/omega_h)sin(delta) where delta is the angle between vector Omega and the vector normal to the disk.Comment: 13 pages, 3 figures, accepted for publications in ApJ Letter

    The non-linear evolution of magnetic flux ropes: 3. effects of dissipation

    No full text
    International audienceWe study the evolution (expansion or oscillation) of cylindrically symmetric magnetic flux ropes when the energy dissipation is due to a drag force proportional to the product of the plasma density and the radial speed of expansion. The problem is reduced to a single, second-order, ordinary differential equation for a damped, non-linear oscillator. Motivated by recent work on the interplanetary medium and the solar corona, we consider polytropes whose index, ?, may be less than unity. Numerical analysis shows that, in contrast to the small-amplitude case, large-amplitude oscillations are quasi-periodic with frequencies substantially higher than those of undamped oscillators. The asymptotic behaviour described by the momentum equation is determined by a balance between the drag force and the gradient of the gas pressure, leading to a velocity of expansion of the flux rope which may be expressed as (1/2?)r/t, where r is the radial coordinate and t is the time. In the absence of a drag force, we found in earlier work that the evolution depends both on the polytropic index and on a dimensionless parameter, ?. Parameter ? was found to have a critical value above which oscillations are impossible, and below which they can exist only for energies less than a certain energy threshold. In the presence of a drag force, the concept of a critical ? remains valid, and when ? is above critical, the oscillatory mode disappears altogether. Furthermore, critical ? remains dependent only on ? and is, in particular, independent of the normalized drag coefficient, ?*. Below critical ?, however, the energy required for the flux rope to escape to infinity depends not only on ? (as in the conservative force case) but also on ?*. This work indicates how under certain conditions a small change in the viscous drag coefficient or the initial energy may alter the evolution drastically. It is thus important to determine ?* and ? from observations

    The pulsed nature of the nightside contribution to polar cap convection: repetitive substorm activity under steady interplanetary driving

    Get PDF
    The aim of this study is to investigate the relative contributions of dayside and nightside processes to the spatial and temporal structure of polar cap plasma convection. The central parameter is the cross-polar cap potential (CPCP). Selecting a 10-h-long interval of stable interplanetary driving by an interplanetary CME (ICME), we are able to distinguish between the dayside and nightside sources of the convection. The event was initiated by an abrupt enhancement of the magnetopause (MP) reconnection rate triggered by a southward turning of the ICME magnetic field. This was followed by a long interval (10 h) of steady and strong driving. Under the latter condition a long series of electrojet intensifications was observed which recurred at 50 min intervals. The detailed temporal structure of polar cap convection in relation to polar cap contraction events is obtained by combining continuous ground observations of convection-related magnetic deflections (including polar cap magnetic indices in the Northern and Southern Hemispheres, PCN and PCS) and the more direct, but lower-resolution ion drift data obtained from a satellite (DMSP F13) in polar orbit. The observed PCN enhancements combined with DMSP satellite observations (F13 and F15 data) of polar cap contractions during the evolution of selected substorm expansions allowed us to estimate the CPCP enhancements (25%) associated with individual events in the series. Ground-satellite conjunctions are further used to investigate the spatial structure of polar cap convection, i.e., the homogeneous plasma flow in the centre (Vi ≤ 1 km s−1) versus channels of enhanced antisunward flows (Vi ≥ 1 km s−1) along the periphery of the polar cap. We emphasise the temporal structure of these polar cap flow phenomena in relation to the prevailing solar wind forcing and the repetitive substorm activity

    The non-linear evolution of magnetic flux ropes: 3. effects of dissipation

    Get PDF

    Dayside and nightside contributions to cross-polar cap potential variations: the 20 March 2001 ICME case

    Get PDF
    We investigate the association between temporal-spatial structure of polar cap convection and auroral electrojet intensifications during a 5-h-long interval of strong forcing of the magnetosphere by an ICME/Magnetic cloud on 20 March 2001. We use data from coordinated ground-satellite observations in the 15:00–20:00 MLT sector. We take advantage of the good latitudinal coverage in the polar cap and in the auroral zone of the IMAGE chain of ground magnetometers in Svalbard – Scandinavia – Russia and the stable magnetic field conditions in ICMEs. The electrojet events are characterized by a sequence of 10 min-long AL excursions to −1000/−1500 nT followed by poleward expansions and auroral streamers. These events are superimposed on a high disturbance level when the AL index remains around −500 nT for several hours. These signatures are different from those appearing in classical substorms, most notably the absence of a complete recovery phase when AL usually reaches above −100 nT. We concentrate on polar cap convection in both hemispheres (DMSP F13 data) in relation to the ICME By conditions, electrojet intensifications, and the global UV auroral configuration obtained from the IMAGE spacecraft. The temporal evolution of convection properties such as the cross-polar cap potential (CPCP) drop and flow channels at the dawn/dusk polar cap (PC) boundaries around the time of the electrojet events are investigated. This approach allows us to distinguish between dayside (magnetopause reconnection) and nightside (magnetotail reconnection) sources of the PC convection events within the context of the expanding-contracting model of high-latitude convection in the Dungey cycle. Inter-hemispheric symmetries/asymmetries in the presence of newly-discovered convection channels at the dawn or dusk side PC boundaries are determined

    On the MHD boundary of Kelvin-Helmholtz stability diagram at large wavelengths

    Get PDF
    Working within the domain of inviscid incompressible MHD theory, we found that a tangential discontinuity (TD) separating two uniform regions of different density, velocity and magnetic field may be Kelvin-Helmholtz (KH) stable and yet a study of a transition between the same constant regions given by a continuous velocity profile shows the presence of the instability with significant growth rates. Since the cause of the instability stems from the velocity gradient, and since a TD may be considered as the ultimate limit of such gradient, the statement comes as a surprise. In fact, a long wavelength (lambda) boundary for the KH instability does not exist in ordinary liquids being instead a consequence of the presence of magnetic shear, a possibility that has passed unnoticed in the literature. It is shown that KH modes of a magnetic field configuration with constant direction do not have the long lambda boundary. A theoretical explanation of this feature and examples of the violation of the TD stability condition are given using a model that can be solved in closed form. Stability diagrams in the (kd, MA) plane are given (where kd = 2pid/lambda, 2d is the velocity gradient length scale, and MA is the Alfvénic Mach number) that show both the well-known limit at small lambdas and the boundary for large but finite lambdas noted here. Consequences of this issue are relevant for stability studies of the dayside magnetopause as the stability condition for a TD should be used with care in data analysis work

    Extreme geomagnetic disturbances due to shocks within CMEs

    Get PDF
    We report on features of solar wind-magnetosphere coupling elicited by shocks propagating through coronal mass ejections (CMEs) by analyzing the intense geomagnetic storm of 6 August 1998. During this event, the dynamic pressure enhancement at the shock combined with a simultaneous increase in the southward component of the magnetic field resulted in a large earthward retreat of Earth\u27s magnetopause, which remained close to geosynchronous orbit for more than 4 h. This occurred despite the fact that both shock and CME were weak and relatively slow. Another similar example of a weak shock inside a slow CME resulting in an intense geomagnetic storm is the 30 September 2012 event, which strongly depleted the outer radiation belt. We discuss the potential of shocks inside CMEs to cause large geomagnetic effects at Earth, including magnetopause shadowing

    Combined Multipoint Remote and In Situ Observations of the Asymmetric Evolution of a Fast Solar Coronal Mass Ejection

    Full text link
    We present an analysis of the fast coronal mass ejection (CME) of 2012 March 7, which was imaged by both STEREO spacecraft and observed in situ by MESSENGER, Venus Express, Wind and Mars Express. Based on detected arrivals at four different positions in interplanetary space, it was possible to strongly constrain the kinematics and the shape of the ejection. Using the white-light heliospheric imagery from STEREO-A and B, we derived two different kinematical profiles for the CME by applying the novel constrained self-similar expansion method. In addition, we used a drag-based model to investigate the influence of the ambient solar wind on the CME's propagation. We found that two preceding CMEs heading in different directions disturbed the overall shape of the CME and influenced its propagation behavior. While the Venus-directed segment underwent a gradual deceleration (from ~2700 km/s at 15 R_sun to ~1500 km/s at 154 R_sun), the Earth-directed part showed an abrupt retardation below 35 R_sun (from ~1700 to ~900 km/s). After that, it was propagating with a quasi-constant speed in the wake of a preceding event. Our results highlight the importance of studies concerning the unequal evolution of CMEs. Forecasting can only be improved if conditions in the solar wind are properly taken into account and if attention is also paid to large events preceding the one being studied

    Low-temperature study of a new nevirapine pseudopolymorph

    Get PDF
    The title compound (systematic name: 11-cyclo­propyl-4-methyl-5,11-dihydro-6H-dipyrido[3,2-b:2′,3′-e][1,4]diazepin-6-one butanol 0.3-solvate), C15H14N4O·0.3C4H9OH, was crystallized in a new triclinic pseudopolymorphic form, a butanol solvate, and the crystal structure determined at 150 K. The mol­ecular conformation of this new form differs from that reported previously, although the main inter­molecular hydrogen-bond pattern remains the same. N—H⋯O hydrogen bonds [N⋯O = 2.957 (3) Å] form centrosymmetric dimers and the crystal packing of this new pseudopolymorph generates infinite channels along the b axis

    Reconstruction of a Large-Scale Reconnection Exhaust Structure in the Solar Wind

    Get PDF
    We recover two-dimensional (2-D) magnetic field and flow field configurations from three spacecraft encounters with a single large-scale reconnection exhaust structure in the solar wind, using a new reconstruction method (Sonnerup and Teh, 2008) based on the ideal single-fluid MHD equations in a steady-state, 2-D geometry. The reconstruction is performed in the rest frame of the X-line, where the flow into, and the plasma jetting within, the exhaust region are clearly visible. The event was first identified by Phan et al. (2006) in the ACE, Cluster, and Wind data sets; they argued that quasi-steady reconnection persisted for over 2 h at a long (390 RE) X-line. The reconnection exhaust is sandwiched between two discontinuities, both of which contain elements of intermediate- and slow-mode behavior; these elements are co-located rather than being spatially separated. These composite discontinuities do not satisfy the coplanarity condition or the standard MHD jump conditions. For all three spacecraft, the Walén regression line slope was positive (negative) for the leading (trailing) discontinuity. Our MHD reconstruction shows that: (1) the X-line orientation was close to the bisector of the overall magnetic shear angle and exhibited a slow rotating motion toward the Sun-Earth line; (2) the X-line moved earthward, dawnward, and southward; (3) the reconnection electric field was small (~0.02 mV/m on average) and gradually decreased from the first crossing (ACE) to the last (Wind). The magnetic field and flow field configurations recovered from ACE and Cluster are similar while those recovered from Wind also include a magnetic island and an associated vortex. Reconnection persisted for at least 2.4 h involving inflow into the exhaust region from its two sides. Time-dependence in the reconnection electric fields seen by ACE and Wind indicates local temporal variations in the field configuration. In addition to the reconstruction results, we provide a description and analysis of many details from the crossings by the spacecraft
    corecore