308 research outputs found

    Study of multi-neutron emission in the β-decay of 11Li

    Get PDF
    The kinematics of two-neutron emission following the β-decay of 11Li was investigated for the first time by detecting the two neutrons in coincidence and by measuring their angle and energy. An array of liquid-scintillator neutron detectors was used to reject cosmic-ray and γ-ray backgrounds by pulse-shape discrimination. Cross-talk events in which two detectors are fired by a single neutron were rejected using a filter tested on the β-1n emitter 9Li. A large cross-talk rejection rate is obtained (> 95%) over most of the energy range of interest. Application to 11Li data leads to a significant number of events interpreted as β-2n decay. A discrete neutron line at ≈ 2 MeV indicates sequential two-neutron emission, possibly from the unbound state at 10.6 MeV excitation energy in 11Be

    On the Lebesgue measure of Li-Yorke pairs for interval maps

    Get PDF
    We investigate the prevalence of Li-Yorke pairs for C2C^2 and C3C^3 multimodal maps ff with non-flat critical points. We show that every measurable scrambled set has zero Lebesgue measure and that all strongly wandering sets have zero Lebesgue measure, as does the set of pairs of asymptotic (but not asymptotically periodic) points. If ff is topologically mixing and has no Cantor attractor, then typical (w.r.t. two-dimensional Lebesgue measure) pairs are Li-Yorke; if additionally ff admits an absolutely continuous invariant probability measure (acip), then typical pairs have a dense orbit for f×ff \times f. These results make use of so-called nice neighborhoods of the critical set of general multimodal maps, and hence uniformly expanding Markov induced maps, the existence of either is proved in this paper as well. For the setting where ff has a Cantor attractor, we present a trichotomy explaining when the set of Li-Yorke pairs and distal pairs have positive two-dimensional Lebesgue measure.Comment: 41 pages, 3 figure

    Cross section measurements of 155,157Gd(n, γ) induced by thermal and epithermal neutrons

    Get PDF
    Neutron capture cross section measurements on 155Gd and 157Gd were performed using the time-of-flight technique at the n_TOF facility at CERN on isotopically enriched samples. The measurements were carried out in the n_TOF experimental area EAR1, at 185 m from the neutron source, with an array of 4 C6D6 liquid scintillation detectors. At a neutron kinetic energy of 0.0253 eV, capture cross sections of 62.2(2.2) and 239.8(8.4) kilobarn have been derived for 155Gd and 157Gd, respectively, with up to 6% deviation relative to values presently reported in nuclear data libraries, but consistent with those values within 1.6 standard deviations. A resonance shape analysis has been performed in the resolved resonance region up to 181 eV and 307 eV, respectively for 155Gd and 157Gd, where on average, resonance parameters have been found in good agreement with evaluations. Above these energies and up to 1 keV, the observed resonance-like structure of the cross section has been analysed and characterised. From a statistical analysis of the observed neutron resonances we deduced: neutron strength function of 2. 01 (28) × 10 - 4 and 2. 17 (41) × 10 - 4; average total radiative width of 106.8(14) meV and 101.1(20) meV and s-wave resonance spacing 1.6(2) eV and 4.8(5) eV for n + 155Gd and n + 157Gd systems, respectively.European Atomic Energy Community (Euratom) 605203Ministerio de Economía y Competitividad FPA2014-52823-C2-1-

    Measurement of the α ratio and (n, γ) cross section of 235U from 0.2 to 200 eV at n_TOF

    Get PDF
    We measured the neutron capture-to-fission cross-section ratio (α ratio) and the capture cross section of 235U between 0.2 and 200 eV at the n_TOF facility at CERN. The simultaneous measurement of neutron-induced capture and fission rates was performed by means of the n_TOF BaF2 Total Absorption Calorimeter (TAC), used for detection of γ rays, in combination with a set of micromegas detectors used as fission tagging detectors. The energy dependence of the capture cross section was obtained with help of the 6 Li(n,t) standard reaction determining the n_TOF neutron fluence; the well-known integral of the 235U(n, f ) cross section between 7.8 and 11 eV was then used for its absolute normalization. The α ratio, obtained with slightly higher statistical fluctuations, was determined directly, without need for any reference cross section. To perform the analysis of this measurement we developed a new methodology to correct the experimentally observed effect that the probabilities of detecting a fission reaction in the TAC and the micromegas detectors are not independent. The results of this work have been used in a new evaluation of 235U performed within the scope of the Collaborative International Evaluated Library Organisation (CIELO) Project, and are consistent with the ENDF/B-VIII.0 and JEFF-3.3 capture cross sections below 4 eV and above 100 eV. However, the measured capture cross section is on average 10% larger between 4 and 100 eV.This work was supported in part by the Spanish national company for radioactive waste management, ENRESA, through the CIEMAT-ENRESA agreements on “Transmutación de radionucleidos de vida larga como soporte a la gestión de residuos radioactivos de alta actividad”; by the Spanish Ministerio de Economía, Industria y Competitividad, through the projects FPA2014-53290-C2-1, FPA2016-76765- P, and FPA2017-82647-P; and by the European Commission 7th Framework Programme project CHANDA (Grant No. FP7-605203)

    The measurement programme at the neutron time-of-flight facility n-TOF at CERN

    Get PDF
    Neutron-induced reaction cross sections are important for a wide variety of research fields ranging from the study of nuclear level densities, nucleosynthesis to applications of nuclear technology like design, and criticality and safety assessment of existing and future nuclear reactors, radiation dosimetry, medical applications, nuclear waste transmutation, accelerator-driven systems and fuel cycle investigations. Simulations and calculations of nuclear technology applications largely rely on evaluated nuclear data libraries. The evaluations in these libraries are based both on experimental data and theoretical models. CERN’s neutron time-of-flight facility n_TOF has produced a considerable amount of experimental data since it has become fully operational with the start of its scientific measurement programme in 2001. While for a long period a single measurement station (EAR1) located at 185 m from the neutron production target was available, the construction of a second beam line at 20 m (EAR2) in 2014 has substantially increased the measurement capabilities of the facility. An outline of the experimental nuclear data activities at n_TOF will be presented

    Cross section measurements of 155,157Gd(n, γ) induced by thermal and epithermal neutrons

    Get PDF
    © SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2019Neutron capture cross section measurements on 155Gd and 157Gd were performed using the time-of-flight technique at the n_TOF facility at CERN on isotopically enriched samples. The measurements were carried out in the n_TOF experimental area EAR1, at 185 m from the neutron source, with an array of 4 C6D6 liquid scintillation detectors. At a neutron kinetic energy of 0.0253 eV, capture cross sections of 62.2(2.2) and 239.8(8.4) kilobarn have been derived for 155Gd and 157Gd, respectively, with up to 6% deviation relative to values presently reported in nuclear data libraries, but consistent with those values within 1.6 standard deviations. A resonance shape analysis has been performed in the resolved resonance region up to 181 eV and 307 eV, respectively for 155Gd and 157Gd, where on average, resonance parameters have been found in good agreement with evaluations. Above these energies and up to 1 keV, the observed resonance-like structure of the cross section has been analysed and characterised. From a statistical analysis of the observed neutron resonances we deduced: neutron strength function of 2. 01 (28) × 10 - 4 and 2. 17 (41) × 10 - 4; average total radiative width of 106.8(14) meV and 101.1(20) meV and s-wave resonance spacing 1.6(2) eV and 4.8(5) eV for n + 155Gd and n + 157Gd systems, respectively.Peer reviewedFinal Accepted Versio
    corecore