41 research outputs found

    Fossil evidence for Cretaceous escalation in angiosperm leaf vein evolution

    Get PDF
    The flowering plants that dominate modern vegetation possess leaf gas exchange potentials that far exceed those of all other living or extinct plants. The great divide in maximal ability to exchange CO 2 for water between leaves of nonangiosperms and angiosperms forms the mechanistic foundation for speculation about how angiosperms drove sweeping ecological and biogeochemical change during the Cretaceous. However, there is no empirical evidence that angiosperms evolved highly photosynthetically active leaves during the Cretaceous. Using vein density (D V ) measurements of fossil angiosperm leaves, we show that the leaf hydraulic capacities of angiosperms escalated severalfold during the Cretaceous. During the first 30 million years of angiosperm leaf evolution, angiosperm leaves exhibited uniformly low vein D V that overlapped the D V range of dominant Early Cretaceous ferns and gymnosperms. Fossil angiosperm vein densities reveal a subsequent biphasic increase in D V . During the first mid-Cretaceous surge, angiosperm D V first surpassed the upper bound of D V limits for nonangiosperms. However, the upper limits of D V typical of modern megathermal rainforest trees first appear during a second wave of increased D V during the Cretaceous-Tertiary transition. Thus, our findings provide fossil evidence for the hypothesis that significant ecosystem change brought about by angiosperms lagged behind the Early Cretaceous taxonomic diversification of angiosperms.Facultad de Ciencias Naturales y Muse

    Fossil evidence for Cretaceous escalation in angiosperm leaf vein evolution

    Get PDF
    The flowering plants that dominate modern vegetation possess leaf gas exchange potentials that far exceed those of all other living or extinct plants. The great divide in maximal ability to exchange CO 2 for water between leaves of nonangiosperms and angiosperms forms the mechanistic foundation for speculation about how angiosperms drove sweeping ecological and biogeochemical change during the Cretaceous. However, there is no empirical evidence that angiosperms evolved highly photosynthetically active leaves during the Cretaceous. Using vein density (D V ) measurements of fossil angiosperm leaves, we show that the leaf hydraulic capacities of angiosperms escalated severalfold during the Cretaceous. During the first 30 million years of angiosperm leaf evolution, angiosperm leaves exhibited uniformly low vein D V that overlapped the D V range of dominant Early Cretaceous ferns and gymnosperms. Fossil angiosperm vein densities reveal a subsequent biphasic increase in D V . During the first mid-Cretaceous surge, angiosperm D V first surpassed the upper bound of D V limits for nonangiosperms. However, the upper limits of D V typical of modern megathermal rainforest trees first appear during a second wave of increased D V during the Cretaceous-Tertiary transition. Thus, our findings provide fossil evidence for the hypothesis that significant ecosystem change brought about by angiosperms lagged behind the Early Cretaceous taxonomic diversification of angiosperms.Facultad de Ciencias Naturales y Muse

    Molecular phylogenetics reveal multiple tertiary vicariance origins of the African rain forest trees

    Get PDF
    Background - Tropical rain forests are the most diverse terrestrial ecosystems on the planet. How this diversity evolved remains largely unexplained. In Africa, rain forests are situated in two geographically isolated regions: the West-Central Guineo-Congolian region and the coastal and montane regions of East Africa. These regions have strong floristic affinities with each other, suggesting a former connection via an Eocene pan-African rain forest. High levels of endemism observed in both regions have been hypothesized to be the result of either 1) a single break-up followed by a long isolation or 2) multiple fragmentation and reconnection since the Oligocene. To test these hypotheses the evolutionary history of endemic taxa within a rain forest restricted African lineage of the plant family Annonaceae was studied. Molecular phylogenies and divergence dates were estimated using a Bayesian relaxed uncorrelated molecular clock assumption accounting for both calibration and phylogenetic uncertainties. Results - Our results provide strong evidence that East African endemic lineages of Annonaceae have multiple origins dated to significantly different times spanning the Oligocene and Miocene epochs. Moreover, these successive origins (c. 33, 16 and 8 million years ¿ Myr) coincide with known periods of aridification and geological activity in Africa that would have recurrently isolated the Guineo-Congolian rain forest from the East African one. All East African taxa were found to have diversified prior to Pleistocene times. Conclusion - Molecular phylogenetic dating analyses of this large pan-African clade of Annonaceae unravels an interesting pattern of diversification for rain forest restricted trees co-occurring in West/Central and East African rain forests. Our results suggest that repeated reconnections between the West/Central and East African rain forest blocks allowed for biotic exchange while the break-ups induced speciation via vicariance, enhancing the levels of endemicity. These results provide an explanation for present day distribution patterns and origins of endemicity for African rain forest trees. Moreover, given the pre-Pleistocene origins of all the studied endemic East African genera and species, these results also offer important insights for setting conservation priorities in these highly diversified but threatene

    Changes to the Fossil Record of Insects through Fifteen Years of Discovery

    Get PDF
    The first and last occurrences of hexapod families in the fossil record are compiled from publications up to end-2009. The major features of these data are compared with those of previous datasets (1993 and 1994). About a third of families (>400) are new to the fossil record since 1994, over half of the earlier, existing families have experienced changes in their known stratigraphic range and only about ten percent have unchanged ranges. Despite these significant additions to knowledge, the broad pattern of described richness through time remains similar, with described richness increasing steadily through geological history and a shift in dominant taxa, from Palaeoptera and Polyneoptera to Paraneoptera and Holometabola, after the Palaeozoic. However, after detrending, described richness is not well correlated with the earlier datasets, indicating significant changes in shorter-term patterns. There is reduced Palaeozoic richness, peaking at a different time, and a less pronounced Permian decline. A pronounced Triassic peak and decline is shown, and the plateau from the mid Early Cretaceous to the end of the period remains, albeit at substantially higher richness compared to earlier datasets. Origination and extinction rates are broadly similar to before, with a broad decline in both through time but episodic peaks, including end-Permian turnover. Origination more consistently exceeds extinction compared to previous datasets and exceptions are mainly in the Palaeozoic. These changes suggest that some inferences about causal mechanisms in insect macroevolution are likely to differ as well

    The early angiosperm Pseudoasterophyllites cretaceus from Albian-Cenomanian of Czech Republic and France revisited

    No full text
    The early halophytic angiosperm Pseudoasterophyllites cretaceus from the Cenomanian Peruc Korycany Formation of the Bohemian Cretaceous Basin and from the Late Albian of the Northern Aquitanian Basin is redescribed. The plant is characterized by semi−whorled linear, and heavily cutinized leaves with paracytic stomata. Stamens associated with P. cretaceus possess an apically emerging connective that possesses the same epidermal cell pattern as the leaves. The stamens are massive, tetrasporangiate, and contain Tucanopollis pollen, thus clearly indicating affinities of P. cretaceus to the basal angiosperms. The plants that co−occur with P. cretaceus in semi−autochtonous taphocoenoses include the conifer Frenelopsis alata, which was likely a halophyte or halo−tolerant glycophyte growing in habitats close to the sea

    Mesozoic mangroves

    No full text
    corecore