44 research outputs found

    Performance evaluation and optimisation of post combustion CO2 capture processes for natural gas applications at pilot scale via a verified rate-based model

    Get PDF
    CO2 absorption based on chemical reactions is one of the most promising technologies for post combustion CO2 capture (PCC). There have been significant efforts to develop energy efficient and cost effective PCC processes. Given that PCC is still maturing as a technology, there will be a continuing need for pilot scale facilities to support process optimisation, especially in terms of energy efficiency. Pilot scale PCC facilities, which are usually orders of magnitude smaller than those that will be used in future in large scale fossil power plants, make it possible to study details of the PCC process at an affordable scale. However, it is essential that pilot scale studies provide credible data, if this is to be used with confidence to envisage the future large-scale use of the PCC process, especially in terms of energy consumption. The present work therefore establishes and experimentally verifies (using a representative pilot plant as a case study) procedures for analysing the energy performance of a pilot scale amine based CO2 capture plants, focusing on natural gas fired applications. The research critically assesses the pilot plant’s current energy performance, and proposes new operating conditions and system modifications by which the pilot plant will operate more efficiently in terms of energy consumption. The methodology developed to assess and improve the energy performance of the PCC process is applicable, with appropriate inputs, to other plants of this type that employs aqueous 30 wt. % monoethanolamine (MEA) solution as the solvent. A rate based model of the post combustion CO2 capture process using an aqueous solution of 30 wt. % MEA as the solvent was developed in Aspen Plus¼ V.8.4, and verified using the results of experimental studies carried out using the UK Carbon Capture and Storage Research Centre / Pilot-scale Advanced Capture Technology (UKCCSRC/PACT) pilot plant, as a representative pilot-scale capture plant, and employed for parametric sensitivity studies. Several parameters have been identified and varied over a given range of lean solvent CO2 loading to evaluate their effects on the pilot plant energy requirement. The optimum lean solvent CO2 loading was determined using the total equivalent work concept. Results show, for a given packing material type, the majority of energy savings can be realised by optimising the stripper operating pressure. To some extent, a higher solvent temperature at the stripper inlet has the potential to reduce the regeneration energy requirement. A more efficient packing material, can greatly improve the pilot plant overall energy and mass transfer efficiency

    Transposable element insertions are associated with batesian mimicry in the pantropical butterfly Hypolimnas misippus

    Get PDF
    Hypolimnas misippus is a Batesian mimic of the toxic African Queen butterfly (Danaus chrysippus). Female H. misippus butterflies use two major wing patterning loci (M and A) to imitate three color morphs of D. chrysippus found in different regions of Africa. In this study, we examine the evolution of the M locus and identify it as an example of adaptive atavism. This phenomenon involves a morphological reversion to an ancestral character that results in an adaptive phenotype. We show that H. misippus has re-evolved an ancestral wing pattern present in other Hypolimnas species, repurposing it for Batesian mimicry of a D. chrysippus morph. Using haplotagging, a linked-read sequencing technology, and our new analytical tool, Wrath, we discover two large transposable element insertions located at the M locus and establish that these insertions are present in the dominant allele responsible for producing mimetic phenotype. By conducting a comparative analysis involving additional Hypolimnas species, we demonstrate that the dominant allele is derived. This suggests that, in the derived allele, the transposable elements disrupt a cis-regulatory element, leading to the reversion to an ancestral phenotype that is then utilized for Batesian mimicry of a distinct model, a different morph of D. chrysippus. Our findings present a compelling instance of convergent evolution and adaptive atavism, in which the same pattern element has independently evolved multiple times in Hypolimnas butterflies, repeatedly playing a role in Batesian mimicry of diverse model species

    Solid‐state transformer based on modular multilevel converters

    No full text

    Extremely rapid isotropic irradiation of nanoparticles with ions generated in situ by a nuclear reaction

    No full text
    Energetic ions represent an important tool for the creation of controlled structural defects in solid nanomaterials. However, the current preparative irradiation techniques in accelerators show significant limitations in scaling-up, because only very thin layers of nanoparticles can be efficiently and homogeneously irradiated. Here, we show an easily scalable method for rapid irradiation of nanomaterials by light ions formed homogeneously in situ by a nuclear reaction. The target nanoparticles are embedded in B2O3 and placed in a neutron flux. Neutrons captured by 10B generate an isotropic flux of energetic α particles and 7Li+ ions that uniformly irradiates the surrounding nanoparticles. We produced 70 g of fluorescent nanodiamonds in an approximately 30-minute irradiation session, as well as fluorescent silicon carbide nanoparticles. Our method thus increased current preparative yields by a factor of 102103. We envision that our technique will increase the production of ion-irradiated nanoparticles, facilitating their use in various applications

    Nano-colloid printing of functionalised PLA-b-PEO copolymers: Tailoring the surface pattern of adhesive motif and its effect on cell attachment

    Get PDF
    n this study, we investigate the preparation of surface pattern of functional groups on poly(lactide) (PLA) surfaces through the controlled deposition of core-shell self-assemblies based on functionalized PLA-b-PEO amphiphilic block copolymers from selective solvents. Through grafting RGDS peptide onto the functionalized copolymer surface, the presented approach enables to prepare PLA surfaces with random and clustered spatial distribution of adhesive motifs. The proposed topography of the adhesion motif was proved by atomic force microscopy techniques using biotin-tagged RGDS peptide grafted on the surface and streptavidin-modified gold nanospheres which bind the tagged RGDS peptides as a contrast agent. The cell culture study under static and dynamic conditions with MG63 osteosarcoma cell line showed that the clustered distribution of RGDS peptides provided more efficient initial cell attachment and spreading, and resistance to cell detachment under dynamic culture compared to randomly distributed RGDS motif when with the same average RGDS peptide concentration
    corecore