116 research outputs found

    Approximate Particle Number Projection for Rotating Nuclei

    Get PDF
    Pairing correlations in rotating nuclei are discussed within the Lipkin-Nogami method. The accuracy of the method is tested for the Krumlinde-Szyma\'nski R(5) model. The results of calculations are compared with those obtained from the standard mean field theory and particle-number projection method, and with exact solutions.Comment: 15 pages, 6 figures available on request, REVTEX3.

    Validity and reliability of the VOAA-DDD to assess spontaneous hand use with a video observation tool in children with spastic unilateral cerebral palsy

    Get PDF
    Contains fulltext : 80999.pdf (publisher's version ) (Open Access)BACKGROUND: In 2003 new computer software, the VOAA (Video Observations Aarts and Aarts), was designed to score and evaluate two important aspects of spontaneous upper limb use, i.e. overall duration and frequency of specific behaviours. The aim of this study was to investigate the test-retest, interrater and intrarater reliability and the construct validity of a new module, the VOAA-DDD, to determine developmental disregard in children with spastic unilateral cerebral palsy (CP). METHODS: A test-retest design with three raters for reliability and a two-group design for construct validity were used. Subjects were a total of 20 children with spastic unilateral CP equally divided in two age groups (2.5-5 and 5-8 years), and 56 healthy children of the same age groups. Overall duration and frequency of specific behaviours of the affected arm and hand were assessed during a task demanding ('stringing beads') and a task stimulating ('decorating a muffin') the use of both hands. Reliability was estimated by intraclass correlation coefficients (ICCs). Construct validity was assessed by comparing children with CP to healthy children. RESULTS: All ICCs exceeded 0.87. In contrast with healthy children, children with CP used their affected hand less during the 'muffin' task compared to the 'beads' task. Of the children with CP, 90% in the age group of 2.5-5 years and 50% in the age group of 5-8 years showed values exceeding the extreme values of healthy controls, respectively, indicating developmental disregard. CONCLUSION: The VOAA-DDD is a reliable and valid instrument to assess spontaneous use of the affected arm and hand in order to determine developmental disregard in children with spastic unilateral CP

    Ground and excited states Gamow-Teller strength distributions of iron isotopes and associated capture rates for core-collapse simulations

    Full text link
    This paper reports on the microscopic calculation of ground and excited states Gamow-Teller (GT) strength distributions, both in the electron capture and electron decay direction, for 54,55,56^{54,55,56}Fe. The associated electron and positron capture rates for these isotopes of iron are also calculated in stellar matter. These calculations were recently introduced and this paper is a follow-up which discusses in detail the GT strength distributions and stellar capture rates of key iron isotopes. The calculations are performed within the framework of the proton-neutron quasiparticle random phase approximation (pn-QRPA) theory. The pn-QRPA theory allows a microscopic \textit{state-by-state} calculation of GT strength functions and stellar capture rates which greatly increases the reliability of the results. For the first time experimental deformation of nuclei are taken into account. In the core of massive stars isotopes of iron, 54,55,56^{54,55,56}Fe, are considered to be key players in decreasing the electron-to-baryon ratio (YeY_{e}) mainly via electron capture on these nuclide. The structure of the presupernova star is altered both by the changes in YeY_{e} and the entropy of the core material. Results are encouraging and are compared against measurements (where possible) and other calculations. The calculated electron capture rates are in overall good agreement with the shell model results. During the presupernova evolution of massive stars, from oxygen shell burning stages till around end of convective core silicon burning, the calculated electron capture rates on 54^{54}Fe are around three times bigger than the corresponding shell model rates. The calculated positron capture rates, however, are suppressed by two to five orders of magnitude.Comment: 18 pages, 12 figures, 10 table

    Direct Neutron Capture for Magic-Shell Nuclei

    Get PDF
    In neutron capture for magic--shell nuclei the direct reaction mechanism can be important and may even dominate. As an example we investigated the reaction 48^{48}Ca(n,Îł)49\gamma)^{49}Ca for projectile energies below 250\,keV in a direct capture model using the folding procedure for optical and bound state potentials. The obtained theoretical cross sections are in agreement with the experimental data showing the dominance of the direct reaction mechanism in this case. The above method was also used to calculate the cross section for 50^{50}Ca(n,Îł)51\gamma)^{51}Ca.Comment: REVTeX, 7 pages plus 3 uuencoded figures, the complete uuencoded postscript file is available at ftp://is1.kph.tuwien.ac.at/pub/ohu/calcium.u

    Beta-decay in odd-A and even-even proton-rich Kr isotopes

    Get PDF
    Beta-decay properties of proton-rich odd-A and even-even Krypton isotopes are studied in the framework of a deformed selfconsistent Hartree-Fock calculation with density-dependent Skyrme forces, including pairing correlations between like nucleons in BCS approximation. Residual spin-isospin interactions are consistently included in the particle-hole and particle-particle channels and treated in Quasiparticle Random Phase Approximation. The similarities and differences in the treatment of even-even and odd-A nuclei are stressed. Comparison to available experimental information is done for Gamow-Teller strength distributions, summed strengths, and half-lives. The dependence of these observables on deformation is particularly emphasized in a search for signatures of the shape of the parent nucleus.Comment: 29 pages, 16 figure

    Fingertip force control during bimanual object lifting in hemiplegic cerebral palsy

    Get PDF
    In the present study we examined unimanual and bimanual fingertip force control during grasping in children with hemiplegic cerebral palsy (CP). Participants lifted, transported and released an object with one hand or both hands together in order to examine the effect on fingertip force control for each hand separately and to determine whether any benefit exists for the affected hand when it performed the task concurrently with the less-affected hand. Seven children with hemiplegic CP performed the task while their movement and fingertip force control were measured. In the bimanual conditions, the weight of the instrumented objects was equal or unequal. The durations of the all temporal phases for the less-affected hand were prolonged during bimanual control compared to unimanual control. We observed close synchrony of both hands when the task was performed with both hands, despite large differences in duration between both hands when they performed separately. There was a marginal benefit for two of the five force related variables for the affected hand (grip force at onset of load force, and peak grip force) when it transported the object simultaneously with the less-affected hand. Collectively, these results corroborate earlier findings of reaching studies that showed slowing down of the less-affected hand when it moved together with the affected hand. A new finding that extends these studies is that bimanual tasks may have the potential to facilitate force control of the affected hand. The implications of these findings for recent rehabilitative therapies in children with CP that make use of bimanual training are discussed

    Fine-Grid Calculations for Stellar Electron and Positron Capture Rates on Fe-Isotopes

    Full text link
    The acquisition of precise and reliable nuclear data is a prerequisite to success for stellar evolution and nucleosynthesis studies. Core-collapse simulators find it challenging to generate an explosion from the collapse of the core of massive stars. It is believed that a better understanding of the microphysics of core-collapse can lead to successful results. The weak interaction processes are able to trigger the collapse and control the lepton-to-baryon ratio (YeY_{e}) of the core material. It is suggested that the temporal variation of YeY_{e} within the core of a massive star has a pivotal role to play in the stellar evolution and a fine-tuning of this parameter at various stages of presupernova evolution is the key to generate an explosion. During the presupernova evolution of massive stars, isotopes of iron, mainly 54,55,56^{54,55,56}Fe, are considered to be key players in controlling YeY_{e} ratio via electron capture on these nuclide. Recently an improved microscopic calculation of weak interaction mediated rates for iron isotopes was introduced using the proton-neutron quasiparticle random phase approximation (pn-QRPA) theory. The pn-QRPA theory allows a microscopic \textit{state-by-state} calculation of stellar capture rates which greatly increases the reliability of calculated rates. The results were suggestive of some fine-tuning of the YeY_{e} ratio during various phases of stellar evolution. Here we present for the first time the fine-grid calculation of the electron and positron capture rates on 54,55,56^{54,55,56}Fe. Core-collapse simulators may find this calculation suitable for interpolation purposes and for necessary incorporation in the stellar evolution codes.Comment: 21 pages, 6 ps figures and 2 table
    • …
    corecore