680 research outputs found

    Increased Plant Uptake of Nitrogen from \u3csup\u3e15\u3c/sup\u3eN-depleted Fertilizer Using Plant Growth-Promoting Rhizobacteria

    Get PDF
    Harmful environmental effects resulting from fertilizer use have spurred research into integrated nutrient management strategies which can include the use of specific microorganisms to enhance nutrient use efficiency by plants. Some strains of plant growth-promoting rhizobacteria (PGPR) have been reported to enhance nutrient uptake by plants, but no studies with PGPR have used 15N isotope techniques to prove that the increased N in plant tissues came from the N applied as fertilizer. The current study was conducted to demonstrate that a model PGPR system can enhance plant uptake of fertilizer N applied to the soil using different rates of 15N-depleted ammonium sulfate. The experiments were conducted in the greenhouse with tomato using a mixture of PGPR strains Bacillus amyloliquefaciens IN937a and Bacillus pumilus T4. Results showed that PGPR together with reduced amounts of fertilizer promoted tomato growth compared to fertilizer without PGPR. In addition, atom% 15N per gram of plant tissue decreased as the amount of fertilizer increased, and PGPR inoculation resulted in a further decrease of the atom% 15N values. The atom% 15N abundance in plants that received 80% fertilizer plus PGPR was 0.1146, which was significantly lower than 0.1441 for plants that received 80% fertilizer without PGPR and statistically equivalent to 0.1184 for plants that received 100% fertilizer without PGPR. The results demonstrate that increased plant uptake of N applied in fertilizer could be achieved with PGPR as indicated by the differences in 15N uptake. Strains of PGPR that lead to increased nutrient uptake by plants should be evaluated further as components in integrated nutrient management systems

    Plant Growth-Promoting Rhizobacteria Allow Reduced Application Rates of Chemical Fertilizers

    Get PDF
    The search for microorganisms that improve soil fertility and enhance plant nutrition has continued to attract attention due to the increasing cost of fertilizers and some of their negative environmental impacts. The objectives of this greenhouse study with tomato were to determine (1) if reduced rates of inorganic fertilizer coupled with microbial inoculants will produce plant growth, yield, and nutrient uptake levels equivalent to those with full rates of the fertilizer and (2) the minimum level to which fertilizer could be reduced when inoculants were used. The microbial inoculants used in the study were a mixture of plant growth-promoting rhizobacteria (PGPR) strains Bacillus amyloliquefaciens IN937a and Bacillus pumilus T4, a formulated PGPR product, and the arbuscular mycorrhiza fungus (AMF), Glomus intraradices. Results showed that supplementing 75% of the recommended fertilizer rate with inoculants produced plant growth, yield, and nutrient (nitrogen and phosphorus) uptake that were statistically equivalent to the full fertilizer rate without inoculants. When inoculants were used with rates of fertilizer below 75% of the recommended rate, the beneficial effects were usually not consistent; however, inoculation with the mixture of PGPR and AMF at 70% fertility consistently produced the same yield as the full fertility rate without inoculants. Without inoculants, use of fertilizer rates lower than the recommended resulted in significantly less plant growth, yield, and nutrient uptake or inconsistent impacts. The results suggest that PGPR-based inoculants can be used and should be further evaluated as components of integrated nutrient management strategies

    Reversible adsorption on a random site surface

    Full text link
    We examine the reversible adsorption of hard spheres on a random site surface in which the adsorption sites are uniformly and randomly distributed on a plane. Each site can be occupied by one solute provided that the nearest occupied site is at least one diameter away. We use a numerical method to obtain the adsorption isotherm, i.e. the number of adsorbed particles as a function of the bulk activity. The maximum coverage is obtained in the limit of infinite activity and is known exactly in the limits of low and high site density. An approximate theory for the adsorption isotherms, valid at low site density, is developed by using a cluster expansion of the grand canonical partition function. This requires as input the number of clusters of adsorption site of a given size. The theory is accurate for the entire range of activity as long as the site density is less than about 0.3 sites per particle area. We also discuss a connection between this model and the vertex cover problem.Comment: 16 pages, 10 figure

    The holistic rhizosphere: integrating zones, processes, and semantics in the soil influenced by roots

    Get PDF
    Despite often being conceptualized as a thin layer of soil around roots, the rhizosphere is actually a dynamic system of interacting processes. Hiltner originally defined the rhizosphere as the soil influenced by plant roots. However, soil physicists, chemists, microbiologists, and plant physiologists have studied the rhizosphere independently, and therefore conceptualized the rhizosphere in different ways and using contrasting terminology. Rather than research-specific conceptions of the rhizosphere, the authors propose a holistic rhizosphere encapsulating the following components: microbial community gradients, macroorganisms, mucigel, volumes of soil structure modification, and depletion or accumulation zones of nutrients, water, root exudates, volatiles, and gases. These rhizosphere components are the result of dynamic processes and understanding the integration of these processes will be necessary for future contributions to rhizosphere science based upon interdisciplinary collaborations. In this review, current knowledge of the rhizosphere is synthesized using this holistic perspective with a focus on integrating traditionally separated rhizosphere studies. The temporal dynamics of rhizosphere activities will also be considered, from annual fine root turnover to diurnal fluctuations of water and nutrient uptake. The latest empirical and computational methods are discussed in the context of rhizosphere integration. Clarification of rhizosphere semantics, a holistic model of the rhizosphere, examples of integration of rhizosphere studies across disciplines, and review of the latest rhizosphere methods will empower rhizosphere scientists from different disciplines to engage in the interdisciplinary collaborations needed to break new ground in truly understanding the rhizosphere and to apply this knowledge for practical guidance

    Hygienic characteristics of radishes grown in soil contaminated with Stenotrophomonas maltophilia

    Get PDF
    Background: Stenotrophomonas maltophilia is a plant growth-promoter. This bacterium is also implicated in human diseases. Thus, after the use of this bacterium in agriculture, the safety of the final products has to be verified. Due to the ubiquitous presence of S. maltophilia in soil, in this study a massive contamination was simulated to evaluate the growth and safety of Raphanus sativus L.. Results: Different inoculums and soil treatment conditions were tested. Soils were analysed weekly and the radishes at harvest for their microbial loads and presence/persistence of S. maltophilia LMG 6606. The concentration of the bacterium added in the different trials decreased during the first week, but increased thereafter and determined a significant increase of growth parameters of radishes. Conclusions: The addition of S. maltophilia LMG 6606 to non-autoclaved soil enhanced the productivity of radishes. The bacterium did not internalize in the hypocotyls, but colonized the external surface ensuring the safety of the products. Thus, a sanitizing bath of hypocotyls before consumption is necessary

    Thyrotropin-releasing hormone (TRH) promotes wound re-epithelialisation in frog and human skin

    Get PDF
    There remains a critical need for new therapeutics that promote wound healing in patients suffering from chronic skin wounds. This is, in part, due to a shortage of simple, physiologically and clinically relevant test systems for investigating candidate agents. The skin of amphibians possesses a remarkable regenerative capacity, which remains insufficiently explored for clinical purposes. Combining comparative biology with a translational medicine approach, we report the development and application of a simple ex vivo frog (Xenopus tropicalis) skin organ culture system that permits exploration of the effects of amphibian skin-derived agents on re-epithelialisation in both frog and human skin. Using this amphibian model, we identify thyrotropin-releasing hormone (TRH) as a novel stimulant of epidermal regeneration. Moving to a complementary human ex vivo wounded skin assay, we demonstrate that the effects of TRH are conserved across the amphibian-mammalian divide: TRH stimulates wound closure and formation of neo-epidermis in organ-cultured human skin, accompanied by increased keratinocyte proliferation and wound healing-associated differentiation (cytokeratin 6 expression). Thus, TRH represents a novel, clinically relevant neuroendocrine wound repair promoter that deserves further exploration. These complementary frog and human skin ex vivo assays encourage a comparative biology approach in future wound healing research so as to facilitate the rapid identification and preclinical testing of novel, evolutionarily conserved, and clinically relevant wound healing promoters
    corecore