1,924 research outputs found
Lessons for a viable water recycling industry
The platform on which the Labour government came to power in Australia in November 2007 included a policy of setting a national wastewater recycling target of 30% by the year 2015. A similar target-based approach was followed by the solid waste recycling industry in Australia the policy of which focused on supply and did not adequately acknowledge the price competitiveness of the product and its demand. This paper highlights the lessons from the solid waste recycling industry and applies them to the water recycling sector. A sound water pricing regime that reflects the true costs of water and a competitive water industry is offered as a better policy alternative to setting recycling targets
Ultraflitration of wastewater with pretreatment: evaluation of flux decline models
Three different mathematical models relating the flux decline were investigated to quantify the effects of pretreatment in a membrane filtration system. The models used are empirical flux decline model, series resistance flux decline model and modified series resistance flux decline model. A cross flow ultrafiltration unit was used to study flux decline and organic removal from synthetic wastewater. Flocculation and adsorption pretreatments were carried out with ferric chloride (FeCl3) and activated carbon of different doses. The three models could predict flux decline after different pretreatments and could be used as a pretreatment index to ultrafiltration. © 2008
The degradtion of humic substance using continuous photocatalysis systems
Photocatalytic oxidation is an emerging technology in water and wastewater treatment. Photocatalysis often leads to complete degradation of organic pollutants without the need for chemicals. This study investigated the degradation of humic substances in water using photocatalysis systems coupled with physio-chemical processes such as adsorption and/or flocculation. Dissolved Organic Carbon (DOC) removal of PAC-TiO2 was improved by a factor of two to three times compared with TiO2 alone. Solid Phase Micro Extraction (SPME)/Gas Chromatograph (GC) flame ionisation detector (FID) was used to investigate intermediates of photocatalytic oxidation in a batch reactor with TiO2 alone and with powder activated carbon (PAC) with TiO2. GC peaks showed that PAC-TiO2 adsorbed some by-products which were photo-resistant and prevented the reverse reaction that occurred when TiO2 was used alone. The two other types of photocatalytic reactors used were the continuous photocatalytic reactor and recirculated photocatalytic reactor. The results show that the recirculated reactor had the highest efficiency in removing organic matter in a short photo-oxidation (detention) time of less than 10min. The use of PAC-TiO2 in recirculated continuous reactor resulted in 80% removal of organic matter even when it was operated for a short detention time and allowed the use of a smaller dose of TiO2
Removal and recovery of phosphate from water using sorption
Sorption is an effective, reliable, and environmentally friendly treatment process for the removal of phosphorus from wastewater sources which otherwise can cause eutrophication of receiving waters. Phosphorus in wastewater, if economically recovered, can partly overcome the future scarcity of phosphorus resulting from exhaustion of natural phosphate rock reserves. The authors present a comprehensive and critical review of the literature on the effectiveness of a number of sorbents, especially some novel ones that have recently emerged, in removing and recovering phosphate. Mechanisms and thermodynamics of sorption, as well as regeneration of sorbents for reuse using acids, bases, and salts, are critically examined. © 2014 Copyright Taylor & Francis Group, LLC
Implementation of Fault-tolerant Quantum Logic Gates via Optimal Control
The implementation of fault-tolerant quantum gates on encoded logic qubits is
considered. It is shown that transversal implementation of logic gates based on
simple geometric control ideas is problematic for realistic physical systems
suffering from imperfections such as qubit inhomogeneity or uncontrollable
interactions between qubits. However, this problem can be overcome by
formulating the task as an optimal control problem and designing efficient
algorithms to solve it. In particular, we can find solutions that implement all
of the elementary logic gates in a fixed amount of time with limited control
resources for the five-qubit stabilizer code. Most importantly, logic gates
that are extremely difficult to implement using conventional techniques even
for ideal systems, such as the T-gate for the five-qubit stabilizer code, do
not appear to pose a problem for optimal control.Comment: 18 pages, ioptex, many figure
Stormwater sand filters in water-sensitive urban design
This paper investigates the suitability of sand filters for harvesting and treating stormwater for non-potable reuse purposes. A stormwater sand filtration device was constructed in a small urban catchment in Sydney, Australia. A sand filter is typically used in water-sensitive urban design (WSUD) as a component of a treatment train to remove pollution from stormwater before discharge to receiving waters, to groundwater or for collection and reuse. This paper describes an 18 month field study undertaken to determine the effectiveness and pollutant removal efficiency of a sand filter, and the differences in the pollutant removal efficiency of two grades of sand. A comparison of pollutant removal with previous literature on sand filters showed similar efficiencies but nutrient removal was higher than expected. A further unexpected result was that the coarse filter media performed as well as the fine media for most pollutant types and was superior in suspended solids removal. Improved modelling equations for predicting suspended solids and total phosphorus removal in sand filters are also presented in this paper
Arsenic removal by a membrane hybrid filtration system
Arsenic is a toxic semi-metallic element that can be fatal to human health. Membrane filtration can remove a number of contaminants from water, including arsenic. Removal of arsenic by membrane filtration is highly dependent on the species of arsenic and the properties of the membrane. The performance of the nanofilter is better for removing As(V) than As(III). About 57% of As(III) and 81% of As(V) was removed from 500 mg/L arsenic solutions by nanofiltration (NTR729HF, Nitto Denko Corp., Japan) of 700 molecular weight (MW) cutoff. The removal efficiency of microfiltration (MF) was much lower than that of nanofiltration (NF) due to its larger pore size. By comparison only 37% of As(III) and 40% of As(V) were removed by microfiltration (PVA membrane, Pure-Envitech, Korea). However, the removal efficiency of microfiltration was increased dramatically when a small amount of nanoscale zero valent iron (nZVI) was added. The removal efficiency by MF increased up to 90% with As(V) and 84% with As(III) when an amount of 0.1 g/L of nZVI was added into the arsenic solution. © 2008 Elsevier B.V. All rights reserved
Use of nanofiltration and reverse osmosis in reclaiming micro-filtered biologically treated sewage effluent for irrigation
Micro-filtered, biologically treated sewage effluent (BTSE) generally has high sodium adsorption ratio (SAR) and sodium (Na) and chloride (Cl) concentrations. Therefore it cannot be directly used for irrigating sensitive crops. A study was conducted on a micro-filtered BTSE from a Sydney water treatment plant to determine whether the BTSE can be treated using nanofiltration (NF) and reverse osmosis (RO) to bring these risk parameters within safety limits. The study showed that using NF and RO alone could not produce the required ratio of SAR. Furthermore, NF alone did not remove the necessary levels of Na and Cl ions while RO did. However, blending equal proportions of NF permeate and RO permeate obtained from a two stages hybrid treatment system consisting of NF followed by RO resulted in a product quality suitable for irrigation in terms of the above mentioned risk factors. Utilizing NF prior to RO reduced the RO membrane fouling as well. Both NF and RO removed most of the pharmaceutical and personal care products from the feed water and this may subsequently protect soil and ground water from potential hazards
Multi-serotype pneumococcal nasopharyngeal carriage prevalence in vaccine naïve Nepalese children, assessed using molecular serotyping.
Invasive pneumococcal disease is one of the major causes of death in young children in resource poor countries. Nasopharyngeal carriage studies provide insight into the local prevalence of circulating pneumococcal serotypes. There are very few data on the concurrent carriage of multiple pneumococcal serotypes. This study aimed to identify the prevalence and serotype distribution of pneumococci carried in the nasopharynx of young healthy Nepalese children prior to the introduction of a pneumococcal conjugate vaccine using a microarray-based molecular serotyping method capable of detecting multi-serotype carriage. We conducted a cross-sectional study of healthy children aged 6 weeks to 24 months from the Kathmandu Valley, Nepal between May and October 2012. Nasopharyngeal swabs were frozen and subsequently plated on selective culture media. DNA extracts of plate sweeps of pneumococcal colonies from these cultures were analysed using a molecular serotyping microarray capable of detecting relative abundance of multiple pneumococcal serotypes. 600 children were enrolled into the study: 199 aged 6 weeks to <6 months, 202 aged 6 months to < 12 months, and 199 aged 12 month to 24 months. Typeable pneumococci were identified in 297/600 (49.5%) of samples with more than one serotype being found in 67/297 (20.2%) of these samples. The serotypes covered by the thirteen-valent pneumococcal conjugate vaccine were identified in 44.4% of samples containing typeable pneumococci. Application of a molecular serotyping approach to identification of multiple pneumococcal carriage demonstrates a substantial prevalence of co-colonisation. Continued surveillance utilising this approach following the introduction of routine use of pneumococcal conjugate vaccinates in infants will provide a more accurate understanding of vaccine efficacy against carriage and a better understanding of the dynamics of subsequent serotype and genotype replacement
Adsorptive removal of heavy metals from water using sodium titanate nanofibres loaded onto GAC in fixed-bed columns
© 2015 Elsevier B.V. Heavy metals are serious pollutants in aquatic environments. A study was undertaken to remove Cu, Cd, Ni, Pb and Zn individually (single metal system) and together (mixed metals system) from water by adsorption onto a sodium titanate nanofibrous material. Langmuir adsorption capacities (mg/g) at 10-3M NaNO3 ionic strength in the single metal system were 60, 83, 115 and 149 for Ni, Zn, Cu, and Cd, respectively, at pH 6.5 and 250 for Pb at pH 4.0. In the mixed metals system they decreased at high metals concentrations. In column experiments with 4% titanate material and 96% granular activated carbon (w/w) mixture at pH 5.0, the metals breakthrough times and adsorption capacities (for both single and mixed metals systems) decreased in the order Pb>Cd, Cu>Zn>Ni within 266 bed volumes. The amounts adsorbed were up to 82 times higher depending on the metal in the granular activated carbon+titanate column than in the granular activated carbon column. The study showed that the titanate material has high potential for removing heavy metals from polluted water when used with granular activated carbon at a very low proportion in fixed-bed columns
- …
