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Highlights 

• Nanofiltration (NF) pre-treatment reduced reverse osmosis (RO) membrane fouling 

• Permeates blends of RO after NF treatment and NF only are suitable for irrigation 

• NF or RO, alone removed most pharmaceuticals and personnel care products (PPCPs) 

• PPCPs removals by NF membranes were lower than those by RO membranes 

 

 

ABSTRACT  

Micro filtered, biologically treated sewage effluent (BTSE) generally has high sodium 

adsorption ratio (SAR) and sodium (Na) and chloride (Cl) concentrations. Therefore it cannot 

be directly used for irrigating sensitive crops. A study was conducted on a micro filtered 

BTSE from a Sydney water treatment plant to determine whether the BTSE can be treated 

using nanofiltration (NF) and reverse osmosis (RO) to bring these risk parameters within 
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safety limits. The study showed that using NF and RO alone could not produce the required 

ratio of SAR. Furthermore, NF alone did not remove the necessary levels of Na and Cl ions 

while RO did. However, blending equal proportions of NF permeate and RO permeate 

obtained from a two stages hybrid treatment system consisting of NF followed by RO resulted 

in a product quality suitable for irrigation in terms of the above mentioned risk factors. 

Utilizing NF prior to RO reduced the RO membrane fouling as well. Both NF and RO 

removed most of the pharmaceutical and personal care products from the feed water and this 

may subsequently protect soil and ground water from potential hazards.  

 

Keywords: Irrigation; Nanofiltration; Reverse osmosis; Sodium adsorption ratio; 

Pharmaceuticals and personal care products   

 

 

1. Introduction 

 Reclaimed wastewater for irrigation serves as an economical water resource in many 

countries [1]. It also has several benefits in improving soil health and reducing the need to use 

fertilisers. However, excessive salts, pathogens, trace organics, sodium (Na) and chloride (Cl) 

can cause dangerous environmental risks. The water quality criteria for irrigation are mainly 

characterized in terms of salinity and Na hazards, pH, and concentrations of some specific 

ions such as Cl-, borate (BO3
3-), and nitrate (NO3

-).  

 Salinity is a hazard that results from high salt content in the water which directly 

affects plant growth, crop performance and soil properties [2] and it can be expressed by 

electrical conductivity (EC). High EC may cause physiological drought in plants. Sodium 

hazard is measured by sodium adsorption ratio (SAR) which provides the relative 

concentration of Na to calcium (Ca) and magnesium (Mg) ions. An excessive level of Na in 
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relation to Ca and Mg affects the permeability characteristics of soil profile by changing the 

soil structure [3]. In addition to these, some specific ions such as Cl-, BO3
3- and NO3

- at 

excessive levels can severely damage plant growth.  

 According to Ayers and Westcot [4] an excess concentration of Cl- in soil solution 

causes this element to accumulate in plant leaves and cause leaf burn/dead leaves. This 

eventually results in necrosis (dead tissue). While boron (B) is an essential element for plant 

growth the high concentration of this element causes older leaves to turn yellow and this 

ultimately causes chlorosis. Nitrogen (N) is also an important element but its over-supply may 

over-stimulate plant growth, leading to delayed maturity of produce and ultimately its poor 

quality. As such, nutrient balanced irrigation water is essential in order to have a positive 

impact on plant growth. According to the water quality standards reported by ANZECC [3], 

the allowable safety limits of SAR, Cl, Na and B are 2-8, <175 mg/L, <115 mg/L, and <0.5 

mg/L for very sensitive crops. The desirable range of pH for irrigation water is 6.5 to 7.6. The 

pH beyond this range (due to bicarbonates and carbonates) causes Ca2+ and Mg2+ ions to form 

insoluble precipitates and consequently Na+ ions become dominant. 

However, these standards may vary depending on the sensitivity of crops, SAR and 

EC of the water, and soil type. Besides these inorganic constituents, pharmaceuticals and 

personal care products (PPCPs) in irrigation water are increasingly accumulating in crop 

tissues and this has important implications for people’s health upon consumption. PPCPs are 

contaminants that have the properties of toxic biological hazards even at low concentrations. 

Carter et al. [5] reported the accumulation of some pharmaceuticals in the tissues of radish 

(Raphanus sativus) and ryegrass (Lolium perenne). Another study reported the presence of 

pharmaceutical residues in plants tissues (especially for alfalfa and apple) which were 

irrigated by reclaimed water containing pharmaceuticals [6]. The long-term use of irrigation 

water containing PPCPs may eventually lead to potential groundwater contamination. The 
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occurrence of PPCPs in groundwater has been documented in some studies over the last 

decade [7, 8, 9]. However, the critical toxic values for most of the PPCPs have not been 

reported in the literature.  

Membrane technologies play a key role in reclaiming micro filtered biologically 

treated sewage effluent (BTSE) and have received much attention during the past few decades 

owing to the need to overcome water shortage problems [10]. Studies have mainly 

investigated combining membrane filtration (MF) and ultrafiltration (UF) with RO 

membranes to remove suspended particles as well as to reduce salinity levels [11,12]. Bunani 

et al. [2] used RO technology to treat biologically treated sewage effluent (BTSE) for 

irrigation and suggested blending 20-30% of BTSE and 80-70% of RO permeate to make 

product water suitable for irrigation. However, it is not economical to blend high volumes of 

RO. Mrayed et al. [13] reported a combination of NF and RO treatment processes to treat 

BTSE and recommended a blending of NF concentrate and RO permeate for irrigation. The 

reason for this particular blending was to enrich the product water with divalent nutrients as 

well as to reduce monovalent nutrients in the product water because NF has the ability to 

reject divalent ions. Conversely, RO can reject both monovalent and divalent ions [14]. They 

suggested blending NF concentrate and RO permeate at the ratio of 32:68 which resulted in a 

SAR of 8.2 but this resulted in a high concentration of Na ions (588 mg/L) which is not 

suitable for Na sensitive crops.   

 None of the above studies have investigated the removal of PPCPs along with 

inorganics from BTSE water for irrigation use. The objective of this study was to evaluate 

combining NF and RO (a two stages hybrid system) to raise the quality of micro filtered 

BTSE water in terms of SAR value and Na and Cl concentrations so that it was suitable for 

irrigation. The possibility of using NF followed by passing part of the NF permeate through 

RO and combining the NF and RO permeates at suitable ratio to achieve good irrigation water 
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quality was tested. The product water’s quality was also evaluated for PPCPs to prevent them 

from poisoning groundwater and soil over the long-term. Furthermore, the 

layout/configurations of NF and RO membranes were investigated in terms of reducing 

potential RO membrane fouling.    

 

2. Materials and Methods  

2.1. Materials  

2.1.1. Feed water  

The micro filtered BTSE collected from a water reclamation plant located in Sydney, 

Australia was used as feed water. Its characteristics and water quality criteria for irrigation use 

are presented in Table 1. The use of this feed water itself is unsuitable for sensitive crops as 

the SAR value was 39, and levels of Na+ and Cl- were 81-120 mg/L and 150-300 mg/L, 

respectively. Therefore the feed water needs to be further treated.  

 

Table 1 

 

2.1.2. Membranes  

Three types of NF membranes and an RO membrane were used in this study to 

compare their effectiveness in removing contaminants of concern. The characteristics of the 

membranes are presented in Table 2. These three membranes were selected because of their 

differences in zeta potential or molecular weight cut off (MWCO) value or both, which would 

help in identifying the mechanisms of DOC, salts and PPCPs removals. 

Table 2 

 

2.2. Methodology  
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A known quantity (20 L) of micro filtered BTSE was filtered through NF or RO 

membrane (Fig. 1). The NF and RO filtration units (Fig. 1) were equipped with a rectangular 

cross-flow cell having a membrane area of 68 cm2. The membrane charge has been shown to 

become less negative (reduced zeta potential) when the temperature of the feed water 

increased [18]. Therefore, a cooling coil was submerged in the feed water tank to maintain the 

feed water temperature at a constant 20 ± 2oC.  A pressure of 4 bar was used for all NF 

membranes. The clear water fluxes (L/m2.h) were 55, 12, and 62 for NP 010, NP 030, and 

NTR 729HF, respectively. Thus the corresponding clear water permeabilities (L/m2.bar.h) 

were 13.75, 3 and 15.5. The pressure used for RO was 40 bar. The clear water flux was 23.5 

L/m2.h and the clear water permeability was 0.59 L/m2.bar.h. The concentrate (retentate) 

produced from NF or RO was recirculated back into the feed water. The performance of each 

membrane was tested using the same operating conditions of the membrane unit. Of the three 

types of NF membranes the best one was selected for combining with a RO post-treatment.  

 

Fig. 1. 

 

The direct application of RO leads to RO membrane fouling resulting in reduced life 

time of RO operation. In order to solve this problem the micro filtered BTSE was passed 

through NF and the NF permeate served as the feed for RO. This is explained in the schematic 

diagram in Fig. 2, Treatment train 2. It is assumed here that NF will remove most of the 

foulants thus preventing them from reaching the RO membrane. This assumption was tested 

by performing a membrane autopsy for both the RO membranes – one RO membrane which 

used NF permeate as feed (Fig. 2) and the other one used BTSE directly as feed (Fig. 1) so 

that the extent of fouling in the two systems can be compared. Another advantage of using NF 

before RO is that NF may remove most of the PPCPs and this aspect was also tested in this 
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study. Even if NF reduces fouling of RO membrane, it cannot satisfactorily  remove the toxic 

monovalent ions, Na+ and Cl-. Therefore RO is required for the removal of these ions. 

However, RO is more expensive than NF and therefore a blend of RO permeate and NF 

permeate at suitable proportion is tested to understand whether a satisfactory quality of 

irrigation water can be produced. This is a cheaper option than using RO alone. 

 

Fig. 2 

 

 At the end of the RO operation, a section of the central part of the RO membrane was 

cut (21.6 cm2) and ultra sonicated for 10-20 min to extract the membrane depositions into 40 

mL milli-Q water. The dissolved solution was filtered using a filter with 0.1 µm opening and 

analyzed for organic fractions. The details of the analysis have been documented elsewhere 

[19].    

  

 

2.3. Chemical analysis  

 Samples of feed water and permeates were collected at different times after the 

experiments had started depending on the operation time of the membranes. Dissolved 

organic carbon (DOC) was analyzed using a Multi N/C 2000 TOC Analyser after filtering 

samples through a filter with a 0.45 µm opening. Organic fractions were measured on Liquid 

Chromatography-Organic Carbon Detection (LC-OCD) Model 8 developed by DOC Labor, 

Dr Huber, Germany. A TSK HW 50-(S) where the column measured the hydrophilic and 

hydrophobic fractions of organic matter. The analysis of inorganic anions was carried out 

using a Metrohm ion chromatograph (Model 790 Personal IC) equipped with an auto sampler 

and conductivity cell detector. Separation was achieved using an A SUPP column 3 (4-150 
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mm). Solutions of Na2CO3 (3.2 mmol/L) and NaHCO3 (1.0 mmol/L) were used as mobile 

phase with a flow rate of 0.7 mL/min. The details can be found elsewhere [20].  

Pharmaceuticals and personal care products were extracted using solid phase 

extraction (SPE) and analyzed by Liquid Chromatograph with tandem mass spectroscopy. 5 

mL analytes were extracted using 500 mg hydrophilic/lipophilic balance (HLB) cartridges 

(Waters, Millford, MA, USA). These analytes were separated using an Agilent (Palo Alto, 

CA, USA) 1200 series high performance liquid chromatography (HPLC) system equipped 

with a 150 x 4.6 mm, 5 µm particle size, Luna C18 (2) column (Phenomenex, Torrence, CA, 

USA). Mass spectrometry was done using an API 4000 triple quadrupole mass spectrometer 

(Applied Biosystems, Foster City, CA, USA) equipped with a turbo-V ion source employed in 

both positive and negative electro-spray modes. All calibration curves had a correlation 

coefficient of 0.99 or better. Details of the analysis are described elsewhere [21].  

 

3. Results and Discussion 

3.1. Characterization of feed water  

The suitability of feed water for irrigation was assessed mainly in terms of SAR value, 

and Na and Cl concentrations. In addition, emerging contaminants such as PPCPs were 

measured to determine whether any potential health hazards to underlying aquifers and soil 

environments can be caused by irrigation. As the BTSE feed is micro filtered, it can be 

assumed that bacterial cells/pathogens were removed to a safety level. Moreover, the presence 

of heavy metals/radioactive substances was not considered because the existence of these 

contaminants in reclaimed water is negligible [22].   

 

3.2. Rejection of inorganic solutes and dissolved organics by NF  

The rejection of inorganic solutes by NF is mainly governed by two mechanisms, 
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namely electrostatic screening and Donnan effect [23]. As shown in Table 3 the removal of 

inorganic solutes by NF varied according to the type of NF membrane. The NTR 729HF was 

more effective than NP 010 and NP 030 in removing inorganic anions because of its 

significantly higher negative zeta potential (-100 mV) compared to the other two membranes 

(-12 and -15 mV). Of the anions, this membrane was the most efficient in removing sulphate 

(SO4
2-) ions, achieving 99% of rejection followed by Cl-and NO3

- rejections which were 11% 

and <5%, respectively. This agrees with the results obtained by Paugam et al. [24] who 

reported that inorganic solutes rejection by polyamide NF membranes (same as NTR 729HF) 

was in the order SO4
2- > Cl- > NO3

-. Paugam et al. [24] explained this order as being due to 

SO4
2- having higher charge and hydration energy compared to the other two anions. An 

increase in anion charge leads to greater electrostatic interaction and Donnan effect [14,24] 

and the more hydrated the ion is the more difficult for its transfer across the membrane [24]. 

RO was used as a post-treatment because NF is not expected to remove most of the 

monovalent ions.  

The retention of organics by NF during the first 10 h of operation was efficient and 

only 0-0.8 mg/L of the influent DOC of concentration of 7.5 mg/L was found in NF permeate 

which corresponds to a 76-95% rejection rate (Table 3). NTR 729HF and NP 030 removed a 

larger percentage of DOC than NP 010 probably because of their lower MWCO, which 

produced higher physical sieving of the organic molecules [25]. RO with the lowest MWCO 

removed the largest %DOC. 

 

Table 3 

 

 The NF permeate concentrations of inorganic solutes and organics increased over time 

during the operation (Fig. 3). As the concentrate was recirculated back with the feed water, 
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the concentration of solutes in the feed water increased over time. This in turn raised the 

solute concentration in permeate. Past studies have reported a similar phenomenon where the 

increased salt concentration in the feed water decreased the retention rate of solutes [26, 27]. 

The reason for this increased concentration in permeate would be due to the membranes 

adsorption sites reaching saturation at high salt concentrations with less adsorption sites 

available for further adsorption. Another reason may be due to membrane pore swelling at 

high salt concentration. According to Escoda et al. [28], an increase in salt concentration 

produces increased pore size of the membrane (pore swelling) as a result of the higher 

repulsive forces between counter ions inside the pores which increased membrane charge 

density.  

  

Fig. 3 

  

 Luo and Wan [29] reported that a high concentration of charged organic electrolytes 

present in the feed water can also result in a smaller retention of monovalent co-ions by NF. 

The continuous increase of organics in the feed water observed in this study could be another 

reason for less inorganic solutes being retained.  

 The more negatively charged NTR 729HF membrane surface is better able to retain 

positively charged ions compared to NP 010 and NP 030. In fact the NTR 729HF had higher 

percentages of rejection of Na, Ca, and Mg than the other NFs (Table 3). The rejection 

percentage was higher for the divalent cations Ca and Mg than the monovalent Na due to 

higher electrostatic attraction of the ions to the membrane. The membrane rejection capacity 

exhibited by the NTR 729HF to both monovalent and divalent ions lasted longer than NP 010 

and NP 030 (Fig. 3). Thus NTR 729HF was used in the subsequent experiments. However, 

when comparing the performance of NF membranes with RO in terms of removing 
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inorganics, the RO membrane demonstrated an excellent ability to remove both divalent and 

monovalent ions.  

 

3.3. Rejection of pharmaceuticals and personal care products  

 The rejection of PPCPs by NF and RO membranes is shown in Table 4 where the RO 

is found to be highly efficient followed by NTR 729HF. The rejections of PPCPs by NP 010 

and NP 030 were also significant but considerably less compared to RO and NTR 729HF. 

When comparing NP 010 and NP 030, the latter had higher rejection for 9 PPCPs and equal 

rejection for two PPCPs.  

Several mechanisms have been proposed to explain the rejection of organics, 

especially PPCPs, unlike inorganic ions which involve mainly interaction of charges on 

membranes and inorganic anions. Rejection of PPCP is based on charge interaction of PPCP 

(pKa values) and membrane, MWCO, and hydrophobicity interactions [25]. Hydrophobicity 

of PPCPs is measured by log P value where P is defined as the ratio of the concentrations of a 

solute in octonol to that in water [30].  PPCPs rejections presented in Table 4 are explained 

using these mechanisms below. 

 

TABLE 4 

 

The higher PPCP rejection of RO is probably due to the lower MWCO of the RO 

membrane (100 Da) compared to the molecular weights of PPCPs (194-446 Da) (Table 1) 

causing steric hindrance [35]. The rejection of PPCPs by steric hindrance cannot be applied to 

the NF membranes because PPCPs are small organics and all PPCPs except Verapamil (454 

Da) investigated in this study were below 400 Da. These are less than the MWCO values of 

the membranes (400-1000 Da).  
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 Comparing the performances of NF membranes, the NTR 729HR was observed to be 

the better performer in rejecting most of the PPCPs despite its higher MWCO (700 Da) 

compared to the NP 030 (400 Da). Seven PPCPs were significantly rejected by NTR 729HF 

and detected in permeates below 10 ng/L in which four were negatively charged (pKa values 

< 7). The surface of NTR 729HF is more negatively charged (zeta potential -100 mV at pH 7) 

than the NP 010 and NP 030 (-12 to -15 mV at pH 7), thus the electrostatic repulsion forces 

between the membrane surface and PPCPs may have played a role in the rejection of the 

negatively charged PPCPs. However, the higher rejection of the positively charged PPCPs 

such as Veerapamil and Amtriptyline (pKa 8.92 - 9.4) by NTR 729HF may be explained 

based on their Log P values (3.79-4.92) in which the rejections were mainly due to 

hydrophobic interactions. Hydrophobicity is another factor that influences the rejection by NF 

where generally compounds having high Log P values are highly rejected by the hydrophilic 

NF membranes [36, 37].  

 The chemical constitutions of the membranes also influence the rejection capacity of 

PPCPs. For example, Causserand et al. [38] reported that the retention coefficient of 

dichloroaniline ranged from 60% to 95% with polyamide membranes whilst it was 10% to 

25% with a cellulose acetate membrane. This is further confirmed by Kiso et al. [39] who 

noted that the removal of pesticides was significantly higher with NTR 729HF that consisted 

more of polyamide membranes than polyetersulfone membranes. Polyamide constituent of 

NTR 729HF could be another reason for the larger rejections of pharmaceuticals observed 

with NTR 729HF than NP 010 and NP 030 in addition to the higher negative zeta potential of 

the membrane.  

 While many studies have examined the removal of micro-pollutants by NF/RO 

membranes, the mechanisms are still not fully understood due to their complexity [37]. The 

presence of inferring compounds like natural organics in the water matrix also hinder the 
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rejection capacities of some pharmaceuticals. Therefore an in-depth investigation of the 

membrane and solute properties is needed for a better understanding of the prediction of the 

rejection capacities.  

 

3.4. Product water quality evaluation for irrigation  

 The NF membranes were effective in removing PPCPs and divalent cations (Ca, Mg). 

However, when evaluating the product water quality for irrigation, NF permeate alone could 

not reduce the SAR value below 14 (the safety levels). Furthermore, the Cl and Na levels in 

the NF permeate were 202 mg/L and 110 mg/L, respectively, which are above the maximum 

allowable levels for crops sensitive to these elements. The RO process eliminated all the 

inorganic ions below critical levels; however, it also removed the beneficial ions. As such, it 

was suggested that blending NF and RO permeate with feed water would be appropriate. In 

this context, blending 10% of feed water with 90% of RO permeate gave an SAR value of 6; 

Cl concentration of 40 mg/L and Na concentration of 15.5 mg/L. In this case the soil 

infiltration problem can be rectified and the toxicity caused by Cl- and Na+ ions is also 

minimized. However, the use of 90% of RO permeate is not an economical solution. The 

blending of NF and RO permeate were found to be a sustainable solution.  Blending 50% of 

NF permeate and 50% of RO permeate resulted in a SAR value of 8; Cl- 109 mg/L and Na+ 57 

mg/L (Table 5). Furthermore, blending feed water instead of NF permeate with RO permeate 

may still result in high concentrations of PPCPs. Boron and NO3
- in the microfiltered BTSE 

were well within the limits (Table 1).  

 

3.5. Performance of the nano filtration-reverse osmosis hybrid system 

Membrane autopsy clearly showed that the organic deposition on the RO membrane 

exposed directly to BTSE was larger than the RO membrane exposed to NF filtered BTSE. 
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NF as a pre-treatment to RO reduced the potential organic foulants on the RO membrane 

including humics, building blocks and most of the low molecular weight neutrals and acids 

(Table 3, Fig. 4). Thus blending 50% of NF and 50% of RO as per Treatment train 2 would be 

advantageous in terms of less interrupted RO operation.  

 The NF flux of NTR 729HF membrane with BTSE decreased from 44 to 42 L/m2.h in 

66 h while NF was operated at 4 bar. The clear water permeability of the used NF and RO 

membranes were measured at the end of the experiments and they were 14.75 and 0.56 

L/m2.h.bar, respectively. The RO flux decreased from 21.4 to 21.0 L/m2.h in 91 h while RO 

was operated at 40 bar with BTSE at similar operation time.  

 

Fig. 4. 

 

 

4. Conclusions  

 This study showed that utilizing treated BTSE for irrigation is a viable option for 

maximizing water reuse in arid and semi-arid regions. Raw micro filtered BTSE is not 

suitable for irrigation because the SAR value, Na+ and Cl- concentrations were higher than the 

maximum allowable limits for sensitive crops. The blend of either ‘raw water – RO permeate’ 

or ‘NF permeate - RO permeate after NF pre-treatment’ (a two stages system) at the ratios of 

10:90 or 50:50, respectively, made the water suitable for irrigation. However, the second 

option, i.e. blending NF permeate and RO permeate after NF pre-treatment is a cost-effective 

option as the RO is more expensive than NF and only 50% of NF permeate was treated by 

RO. Moreover, in order to ensure RO membrane operates more smoothly with less fouling, 

the NF process is used as a pre-treatment to RO to achieve partial removal of potential 

organic foulants. NF removed all the humics, building blocks and most LMW organics. Both 
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RO and NF achieved very high removals of PPCPs. This study demonstrated that NF 

permeate can be blended with permeate of RO after NF pre-treatment in suitable proportions 

to produce good quality irrigation water. However, the blending proportion of permeates can 

vary depending on the type of membranes used, soil type, salt tolerance of crops, salts in the 

soil solution, and wastewater (feed) characteristics. 
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Table 1.  Physico-chemical characteristics of feed water  

Parameter Unit Micro 
filtered 
BTSE 

Australian and New Zealand Guidelines for 
Fresh and Marine Water Quality [3] 

Dissolved organic 
carbon (DOC) 

mg/L 3.6-7.7  

pH - 6.8-7.6 6.5-8.0 
conductivity dS/cm 0.52-1.12 <0.65; 0.65-2.9; 2.9-5.4; >8.1 for very 

sensitive; sensitive to moderately tolerant; 
tolerant to very tolerant; too saline.  

SAR  39 2-8; 8-18; 18-146; 46-102 for very sensitive; 
sensitive; moderately tolerant and tolerant 
crops. 

F- mg/L 0.7-1.1 1.0 and 2.0: long term trigger value and short 
term trigger value 

Cl- mg/L 150-300 <175; 175-350; 350-700; >700 for very 
sensitive; sensitive; moderately tolerant and 
tolerant crops 

NO3
- mg N/L 1.0-1.3 5; 25-125 for long term trigger value and short 

term trigger value 
PO4

3- mg P/L 0.74-0.99 0.05; 0.8-10 for long term trigger value and 
short term trigger value 

SO4
2- mg S/L 49-51  

Na+ mg/L 81-120 <115; 115-230; 230-460; >460 for sensitive; 
moderately sensitive; moderately tolerant and 
tolerant crops. 

K+ mg/L 15-21  

Ca2+ mg/L 21-40  

Mg2+ mg/L 10-15  

BO3
3- mg B/L 0.04-0.06 <0.5; 0.5-2.0; 2.0-6.0; 6.0-15.0 for sensitive; 

moderately sensitive; moderately tolerant and 
tolerant crops. 
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Table 2.  Characteristics of NF and RO membranes 

Membrane Manufacturer Material 
aMWCO 
(Da) 

Membrane 
property 

Zeta 
potential 
(mV) at 
pH 7 

NP 010 Macrodyn®Nadir Polyetersulfone 1000 Hydrophilic -12b 

NP 030 Macrodyn®Nadir polyetersulfone 400 Hydrophilic -15b 

NTR 729HF Nitto Denko 
Polyvinylalcoho/poly
amides (Heterocyclic 
aromatic) 

700 Hydrophilic -100c 

RO Woongjin Chemical Polyamides 100 - -21d 
a Molecular weight cut off (MWCO) 

bKaya et al [15]  

cShon et al. [16]  

d Shon et al. [17]  
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Table 3.  Rejection (%) of inorganic solutes and organics by NF/RO membranes during 

the first 10 hrs operation 

 NP 010 NP 030 NTR 729HF RO 
Ca2+ 12±4 20±5 62±7 99±1 
Mg2+ 16±5 22±2 62±11 98±1 
NO3

- Nil 18±5 <5 88 
SO4

2- 41±6 43±12 99±1 >99 
Na+ Nil Nil 19 96±1 
Cl- 4±1 5±1 11±1 92±1 
DOC 76±3 84±2 95±2 >99 
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Table 4.  The removal (%) of PPCPs by NF and RO membranes from BTSE  

PPCPs MW 
pKa 

(pH 7) 

Log Pa 
(Octonol-

water) 
(pH 7) 

PPCPs in 
Feed water 

ng/L 

Removal % 
(effluent level ng/L) 

NP010 NP030 
NTR 

729HF 
RO 

Atenolol  
(Beta-blocker) 

266 9.6b 0.16 77.6-220 <5 (76) 58 (33) 75.5 (20) 98 (<5) 

Sulfamethoxazole 
(antibiotic) 

253 2.1c; <2c 0.89 109-174 27 (80) 50 (55) 98 (<5) 97 (<5) 

Caffeine 
(therapeutics) 

194 10.4d -0.07 88-675 Nil (646) Nil (631) 35 (57) 97 (39) 

Trimethoprim (anti-
biotic ) 

290 6.6 – 7.2e 0.91 146-229 8 (146) 8 (146) 79 (31) 98 (<5) 

Carbamazepine 
(anti-seizure) 

236 <2c 2.45 362-434 <5 (345) <5 (352) 87 (50) 98 (<5) 

Fluoxetine  
(anti-depressive 
agent) 

309 10.1e 4.05 <5-20 13 (11) 68 (<5) NDf NDf 

Amtriptyline 
(analgesics) 

277 9.4a 4.92 11-37 52 (7) 74 (<5) 64 (<5) 89 (<5) 

Primidone 
(anticonvulsant) 

218 - 0.91 11-26 23 (17) 39 (14) 85 (<5) 62 (<5) 

Verapamil 
(therapeutics) 

455 8.92a 3.79 9-28 13 (8) 57 (<5) 66 (<5) 86 (<5) 

Diclofenac (anti-
inflammatory) 

296 4.1 – 4.2e 4.51 57-131 16 (71) 29 (60) 93 (<5) 97 (<5) 

Naproxen 
(analgesic) 

230 4.2e 3.18 68.8-211 32 (47) 54 (32) 95 (<5) 98 (<5) 

Gemfibrozil 
(therapeutics) 

250 4.7c 4.77 31-430 16 (122) 20 (117) 72 (9) 99 (<5) 

 

a MW and Log P values were obtained from U.S National medicine library. Online 
http://chem.sis.nlm.nih.gov/chemidplus/  
b Hapeshi et al. [31] 
c Westerhoff et al. [32] 
d Yang et al. [33] 
e Serrano et al. [34] 
f PPCPs not detected in feed water  
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Table 5.  Different blending ratios of NF permeate and RO permeate required to obtain 

product water suitable for irrigation. 

Parameters NF 
permeate 

proportion 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

RO 
permeate 

proportion 

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 

SAR  3 4 5 6 7 8 10 11 12 13 14 
Ca  0.3 2 3 4 5 7 8 9 10 12 13 
Mg  0.1 1 2 3 4 5 5 6 7 8 9 
K  0.7 2 3 4 5 6 7 9 10 11 12 
Na  4 15 26 36 47 57 68 79 89 100 111 
Cl  16 35 53 72 90 109 128 146 165 183 202 
S  0.2 0.3 0.3 0.4 0.4 0.5 0.6 0.6 0.7 0.7 0.8 
NO3

- N  2 3 4 5 6 7 8 9 10 11 12 
B  <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 
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List of Figures 

Fig. 1. Schematic diagram of NF and RO filtration units used 

Fig. 2. Schematic diagram of NF/RO membrane operations: (a) single step NF or RO 

(Treatment train 1) (b) two steps NF and RO in series (Treatment train 2) 

Fig. 3. Effect of operation time on the concentration of inorganic solutes and DOC in NF 

permeates. 

Fig. 4. Membrane autopsy for organic depositions on RO membranes with and without NF as 

pre-treatment (LMW, low molecular weight) 
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