50,256 research outputs found

    Role of antioxidant supplementation and exercise regimen in handling oxidative stress from natural PM2.5 exposure due to boreal forest fire

    Get PDF
    Thesis (M.S.) University of Alaska Fairbanks, 2019Particulate matter 2.5 (PM2.5) exposure induces oxidative stress that causes many negative health outcomes such as cancer, cardiovascular disease and neurodegenerative disease. Research shows that dietary antioxidants and an up-regulated endogenous antioxidant response from exercise play key roles in the antioxidant defense against oxidative stress. This study is the first to use an animal model to investigate the cumulative effects of using lifestyle interventions of antioxidant supplementation (Arthrospira platensis) and exercise regimen on the antioxidant response before, during, and after ambient PM2.5 exposure. In a two-factorial, longitudinal design, sled dogs (n=48) were divided into four groups (exercise and supplemented, exercise, supplemented, and control) to (1) test the effects of exercise and antioxidant regimen on antioxidant response after one month of implemented exercise and supplementation protocol and (2) measure the antioxidant response of all groups during and after a natural forest fire event in 2015. Commercial assays for Total antioxidant Power (TAP) and the enzymatic antioxidant Superoxide Dismutase (SOD) were used as markers for the total antioxidant response and the endogenous response at all time points. During the forest fire, SOD was increased 5-10-fold over pre/post-exposure levels in all groups suggesting potential implication for using SOD as a marker for the acute response to environmental stress. TAP was increased in the exercise groups after one month of exercise protocol implementation, demonstrating the cytoprotective increase of antioxidants after repeated exercise.Chapter 1: Introduction -- 1.1 PM2.5 -- 1.2 Oxidative stress and exercise -- 1.3 Antioxidants -- 1.4 Significance and research hypothesis -- Chapter 2 The effects of spirulina supplementation and exercise regimen on the antioxidant response to PM2.5 exposure in sled dogs -- 2.1 Introduction -- 2.2 Materials and methods -- 2.2.1 Animals -- 2.2.2 Experimental design -- 2.2.4 Exercise -- 2.2.5 Blood sampling -- 2.2.6 Biochemical analyses -- 2.2.7 Statistics -- 2.3 Results -- 2.4 Discussion -- 2.5 Conclusions -- Chapter 3 Conclusions and future directions -- References

    Late industrialisation and structural change: the Indonesian experience

    Get PDF
    industrialisation, structural, change, Indonesia

    Emergence of half-metallicity in suspended NiO chains

    Get PDF
    Contrary to the antiferromagnetic and insulating character of bulk NiO, one-dimensional chains of this material can become half-metallic due to the lower coordination of their atoms. Here we present ab initio electronic structure and quantum transport calculations of ideal infinitely long NiO chains and of more realistic short ones suspended between Ni electrodes. While infinite chains are insulating, short suspended chains are half-metallic minority-spin conductors which display very large magnetoresistance and a spin-valve behaviour controlled by a single atom.Comment: 5 pages, 4 figures; accepted version; minor changes in introduction and reference

    Kondo effect and spin quenching in high-spin molecules on metal substrates

    Full text link
    Using a state-of-the art combination of density functional theory and impurity solver techniques we present a complete and parameter-free picture of the Kondo effect in the high-spin (S=3/2S=3/2) coordination complex known as Manganese Phthalocyanine adsorbed on the Pb(111) surface. We calculate the correlated electronic structure and corresponding tunnel spectrum and find an asymmetric Kondo resonance, as recently observed in experiments. Contrary to previous claims, the Kondo resonance stems from only one of three possible Kondo channels with origin in the Mn 3d-orbitals, its peculiar asymmetric shape arising from the modulation of the hybridization due to strong coupling to the organic ligand. The spectral signature of the second Kondo channel is strongly suppressed as the screening occurs via the formation of a many-body singlet with the organic part of the molecule. Finally, a spin-1/2 in the 3d-shell remains completely unscreened due to the lack of hybridization of the corresponding orbital with the substrate, hence leading to a spin-3/2 underscreened Kondo effect.Comment: 5 pages, 2 figure

    Critical comparison of electrode models in density functional theory based quantum transport calculations

    Full text link
    We study the performance of two different electrode models in quantum transport calculations based on density functional theory: Parametrized Bethe lattices and quasi-one dimensional wires or nanowires. A detailed account of implementation details in both cases is given. From the systematic study of nanocontacts made of representative metallic elements, we can conclude that parametrized electrode models represent an excellent compromise between computational cost and electronic structure definition as long as the aim is to compare with experiments where the precise atomic structure of the electrodes is not relevant or defined with precision. The results obtained using parametrized Bethe lattices are essentially similar to the ones obtained with quasi one dimensional electrodes for large enough sections of these, adding a natural smearing to the transmission curves that mimics the true nature of polycrystalline electrodes. The latter are more demanding from the computational point of view, but present the advantage of expanding the range of applicability of transport calculations to situations where the electrodes have a well-defined atomic structure, as is case for carbon nanotubes, graphene nanoribbons or semiconducting nanowires. All the analysis is done with the help of codes developed by the authors which can be found in the quantum transport toolbox Alacant and are publicly available.Comment: 17 pages, 12 figure

    Selecting a Small Set of Optimal Gestures from an Extensive Lexicon

    Full text link
    Finding the best set of gestures to use for a given computer recognition problem is an essential part of optimizing the recognition performance while being mindful to those who may articulate the gestures. An objective function, called the ellipsoidal distance ratio metric (EDRM), for determining the best gestures from a larger lexicon library is presented, along with a numerical method for incorporating subjective preferences. In particular, we demonstrate an efficient algorithm that chooses the best nn gestures from a lexicon of mm gestures where typically nmn \ll m using a weighting of both subjective and objective measures.Comment: 27 pages, 7 figure
    corecore