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Abstract

Particulate matter 2.5 (PM2.5) exposure induces oxidative stress that causes many negative health 

outcomes such as cancer, cardiovascular disease and neurodegenerative disease. Research shows that 

dietary antioxidants and an up-regulated endogenous antioxidant response from exercise play key roles in 

the antioxidant defense against oxidative stress. This study is the first to use an animal model to 

investigate the cumulative effects of using lifestyle interventions of antioxidant supplementation 

(Arthrospira platensis) and exercise regimen on the antioxidant response before, during, and after 

ambient PM2.5 exposure. In a two-factorial, longitudinal design, sled dogs (n=48) were divided into four 

groups (exercise and supplemented, exercise, supplemented, and control) to (1) test the effects of exercise 

and antioxidant regimen on antioxidant response after one month of implemented exercise and 

supplementation protocol and (2) measure the antioxidant response of all groups during and after a natural 

forest fire event in 2015. Commercial assays for Total antioxidant Power (TAP) and the enzymatic 

antioxidant Superoxide Dismutase (SOD) were used as markers for the total antioxidant response and the 

endogenous response at all time points. During the forest fire, SOD was increased 5-10-fold over 

pre/post-exposure levels in all groups suggesting potential implication for using SOD as a marker for the 

acute response to environmental stress. TAP was increased in the exercise groups after one month of 

exercise protocol implementation, demonstrating the cytoprotective increase of antioxidants after repeated 

exercise.
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Chapter 1 Introduction

1.1 PM2.5

The World Health Organization (WHO) has cited air pollution as the largest environmental risk to 

humans (1). Several classifications of air pollution exist but WHO recommends using PM2.5 as the major 

index for air pollution due to its pervasive, detrimental health effects on humans and other species. PM2.5 

is defined as particulates with different chemical compositions that have aerodynamic diameters of 2.5 

micrometers or less (2). PM2.5 is more damaging than larger particulates because it has a greater specific 

surface area, penetrates deeper into the lungs and nasal mucosal layer, and reaches other organs and 

tissues via circulation (1, 3-6).

Sources that release PM2.5 are both anthropogenic and natural, making PM2.5 ubiquitous (i.e. 

power plants, forest fires, exhaust from vehicles, etc.) (5, 7). Since exposure is closely related to the 

human carbon footprint, large urban areas receive much attention for elevated PM2.5 exposure (8, 9). For 

example, Los Angeles and Beijing are two cities that receive much news and other media coverage due to 

their “smog” and poor air quality (10, 11). However, exposure is also prevalent in many rural 

communities and ecosystems as particulates can disperse over long distances and some rural areas have 

naturally occurring high PM2.5 events such as forest fires. A statistic supporting the ubiquitous impact of 

air pollution stated that 92% of the global population lives in areas that fail to meet World Health 

Organization air quality guidelines (1).

Elevated PM2.5 is associated with increased hospitalizations and morbidity and mortality from 

cancer, cardiovascular and respiratory disease, and diabetes (12-16). Globally, 4.2 million premature 

deaths were attributed to air pollution in 2016 (17). While several biochemical mechanisms for damage 

from PM2.5 exposure have been suggested (15, 16, 18, 19), a number of studies attribute PM2.5 induced 

damage to systemic oxidative stress (5, 16, 20). Oxidative stress is an oxidative disruption in balance 

between reactive oxygen species (ROS) and endogenous and exogenous antioxidants (21). PM2.5 creates 

oxidative stress because particulates often contain environmentally persistent free radicals and/or 
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transition metals, which induce oxidative stress and inflammation when particulates are lodged in 

vascular tissue or distributed through circulation.

1.2 Oxidative Stress and Exercise

Earlier literature demonstrated the detrimental health effects of oxidative stress as it is associated 

with multiple disease states and inflammation (22); however, newer studies show that normal levels of 

oxidative stress from reactive oxygen species (ROS) are needed to maintain cellular homeostasis through 

redox balance and signaling (23). Exercise is one source of induced, beneficial oxidative stress as 

numerous studies have demonstrated the positive health outcomes associated with exercise (23-26). 

Exercise-induced ROS is attributed to increased oxygen consumption (normally 10-20 fold increase but 

up to 100-fold over resting oxygen consumption) and consequent free radical generation from the electron 

transport chain during cellular respiration (27, 28). Less than a half percent of oxygen consumed is leaked 

as the superoxide anion - a major source of cellular ROS and precursor to peroxynitrite, a reactive 

nitrogen species. Increased oxidative stress improves the efficacy and response of the endogenous 

antioxidant defense through upregulation of antioxidant producing genes (29-31).

For exercise to induce beneficial adaptations, it is suggested that the level of exercise should 

increase ROS to stimulate an antioxidant response, but exercise should not be over-exhaustive to induce 

oxidative stress and damage by overwhelming antioxidant defense and disrupting redox balance. 

Frequency, duration, intensity, and type of exercise are all contributing factors affecting whether exercise

generated oxidative stress will be detrimental or beneficial (23). Examples of the unbalanced spectrum of 

physical activity are seen in the two “extremes” of overtraining syndrome in endurance athletes (32) and 

sedentary/obese populations (26, 33). Athletes with overtraining syndrome see unexplained, drastic 

decreases in performance. Increasing evidence suggests that overtraining chronically induces oxidative 

stress, which leads to performance reduction. This phenomenon, termed the “oxidative stress hypothesis,” 

appears to be a likely contributor to the development of overtraining syndrome (31, 32, 34). Conversely, 

sedentary or obese populations experience elevated markers of oxidative stress (33, 35). The potential 
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reasons for increased oxidative stress in sedentary and obese populations are increased NADPH oxidase 

activity that leads to generation of the superoxide anion in sedentary populations, chronic ingestion of 

lipid-rich diets in obese populations or increased leptin, an adipocyte-derived hormone, which induces a 

pro-inflammatory state in obese populations (33, 35, 36).

1.3 Antioxidants

Antioxidants in cells originate from: (1) generation of endogenous sources of antioxidants 

(enzymatic and nonenzymatic) through induction of biosynthesis genes upregulating the synthesis 

pathway transcription, or from (2) dietary sources of antioxidants (37). Examples of enzymatic 

antioxidants are superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT). 

Examples of non-enzymatic antioxidants are glutathione, uric acid and bilirubin (37). Dietary sources of 

antioxidants come from fruits, vegetables, and supplements (e.g.: vitamin A, vitamin E, phytochemicals) 

(37). Antioxidants have been shown to alleviate markers of oxidative stress by causing a reductive shift in 

redox balance (38). While both exogenous and endogenous antioxidants can complement each other to 

increase antioxidant status in cells, research shows that high levels of exogenous antioxidants can 

compromise the efficacy and response of the endogenous antioxidant defense system (38-41).

1.4 Significance and Research Hypotheses

In this study, sled dogs are used as sentinels for human health to measure the impact of exercise 

and antioxidant supplementation on the oxidative response associated with exposure to PM2.5 levels from 

a naturally occurring forest fire event. A number of studies have shown the link between PM2.5 exposure 

and markers of oxidative stress in vivo and in vitro (5, 16, 42-44). Fewer studies have looked at PM2.5 

exposure and antioxidant status (45), and to our knowledge, there have been no studies examining the 

combined effect of exercise and antioxidant supplementation regimen on PM2.5 exposure. By studying 

the between group effects, we tested the following hypotheses: (1) long-term supplementation will lessen 

endogenous antioxidant enzyme adaptation from exercise regimen and (2) exercise regimen will be more 

3



beneficial at pre-adapting the antioxidant response to PM2.5 exposure from forest fire smoke than 

antioxidant supplementation.

Markers chosen to measure the interaction between exogenous and endogenous antioxidant 

response to exercise, antioxidant supplementation, and PM2.5 exposure were superoxide dismutase 

(SOD) and total antioxidant power (TAP). Superoxide dismutases are metalloenzymes that dismutate the 

superoxide anion into hydrogen peroxide and water. The magnitude of the rate constant of SOD is 109 

(very high for an enzyme), making it an important first line of defense in dismutating the superoxide 

anion (46, 47). Total Antioxidant Power is a common measure of the total antioxidant capacity in the 

sample. TAP measures antioxidant enzymes (e.g., SOD), functional molecules with antioxidant 

properties, and dietary sources of antioxidants by measuring the ability of plasma constituents to reduce 

copper (48).

The antioxidant used in this study was 0.5 g/day spirulina Arthrospira platensis - a blue-green 

algae - which was shown to improve gut health and immune status in sled dogs at this same dosage (49). 

The antioxidant properties of spirulina are due to phycocyanin and beta-carotene. Phycocyanin is water

soluble and derives from the light-harvesting pigments in spirulina and it has been shown to inhibit 

NADPH Oxidase activity. NADPH oxidase is one of the major generators of the superoxide anion in 

muscle cells during exercise and generates superoxide in other cells during other diseased states (33, 36, 

50). Beta-carotene is a red-orange pigment that can quench free radicals to prevent oxidative stress 

damage to DNA, lipids and proteins (51).

Exercise regimen consisted of sled dogs running up to two hour “long slow distance” events on a 

horse wheel adapted for use with dogs, 1-2 times per week. Dogs ran at speeds ranging from 7-14 mph, 

which correlates to exercise efforts around 40% VO2 max but total distance per hour was usually around 8 

miles. Both supplementations and exercise interventions were conducted for four weeks to ensure that a 

measurement of the cumulative effects of antioxidant supplementation and exercise was measured before 

a forest fire event occurred.
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Both exercise and supplementation have potential to improve humans' and other species' ability 

to handle oxidative stress from PM2.5 exposure. Such lifestyle interventions are accessible to much of the 

global population and may improve health outcomes to air pollution - the largest environmental health 

risk to humans.
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Chapter 2 The Effects of Spirulina Supplementation and Exercise Regimen on the Antioxidant Response 

to PM2.5 Exposure in Sled Dogs

2.1 Introduction

Air pollution is an increasing concern for humans and other species as exposure often leads to 

production of free radicals and inflammation from oxidative stress (12, 52, 53). Sources of air pollution 

include exhaust from power plants, vehicles and smoke from forest fires (54). One of the major pollutants 

in ambient air pollution is particulate matter 2.5. PM2.5 is particulate matter with a diameter of 2.5 

micrometers or less and is especially damaging to human health because small particulates penetrate 

deeper in lung tissue than larger particulates such as PM10 (55). Health consequences associated with 

exposure to PM2.5 are increased hospitalizations, cardiovascular and respiratory disease, cancer, 

morbidity and mortality (12, 14).

While reactive oxygen species (ROS), the contributors to oxidative stress, play a vital role in 

maintaining cellular redox balance and cellular signaling, both chronic and acute PM2.5 exposure can 

cause oxidative stress in cells after exhausting endogenous antioxidant systems (20, 56, 57). One strategy 

for reversing oxidative stress damage from PM2.5 is to improve cellular antioxidant response through 

lifestyle interventions such as exercise and/or antioxidant supplementation. Repeated exercise regimen or 

intake of dietary (exogenous) antioxidants can influence the endogenous antioxidant response by 

increasing the activity and efficiency of enzymes catalase (CAT), superoxide dismutase (SOD), and 

glutathione peroxidase (GPx) (27, 58). However, a growing body of evidence suggests that 

supplementation can attenuate the endogenous antioxidant response by blunting cellular adaptation to 

normally increased oxidative stress (40, 59-61).

In this study, we tested whether exercise or supplementation pre-adapted the antioxidant defense 

system of sled dogs, a sentinel species for human health, to a naturally occurring forest fire. Exercise 

regimen consisted of 1-2 hour low intensity exercise events once-to-twice per week. The supplement used 

in this study was spirulina, which likely derives its antioxidant potential from phycocyanobilin (PCB) in 
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phycocyanin. Phycocyanin is a water-soluble light-harvesting complex and PCB is a NADPH oxidase 

inhibitor. NADPH oxidase generates the superoxide anion, the parent molecule of ROS in exercise and 

many disease states, and inhibition would lower the amount of ROS generated. Forest fire smoke 

exposure happened in the summer of 2015, the second worst forest fire season on record in Alaska (62). 

The American Lung Association recently ranked Fairbanks “the most polluted city in America” and high 

levels of PM2.5 in smoke from forest fires contribute to Fairbanks' air quality problem (63). The markers 

chosen to measure antioxidant status in dogs exposed to forest fire smoke were the antioxidant enzyme 

superoxide dismutase (SOD) and total antioxidant power (TAP). The endogenous antioxidant enzyme 

SOD is the key defense against the oxidative stress-generated superoxide anion and its increased presence 

has been associated with exposure to PM2.5 (45). TAP is a common measure for the total antioxidant 

(endogenous and exogenous) level in plasma and similar measures to TAP, which use Trolox-equivalents, 

are changed after exercise regimen (64). Collectively, SOD and TAP will measure the protective or 

deleterious effects of exercise and supplementation regimen on both the endogenous (SOD) and the total 

antioxidant response (TAP). To our knowledge, this is the first study examining the combined effect of 

exercise and/or antioxidant supplementation regimen on oxidative stress response to PM2.5 exposure.

Our hypotheses are: (1) long-term supplementation will lessen endogenous antioxidant enzyme adaptation 

from exercise regimen and (2) exercise regimen will be more beneficial at pre-adapting the antioxidant 

response to PM2.5 exposure from forest fire smoke than antioxidant supplementation.

In order to control for lifestyle factors that may affect endogenous antioxidant response, we used 

sled dogs in interior AK as a sentinel model for human health to test our hypotheses. Advantages of the 

sled dog sentinel model for environmental stress are published elsewhere (65-67); highlighted benefits in 

this study are: sled dogs have controlled diet and exercise regimens that have not been replicated in 

human studies, making it possible to manipulate both lifestyle interventions with less variability. Also 

healthy body weights were maintained and remained unchanged throughout the study, which is important 

as oxidant-antioxidant status is altered when comparing healthy, overweight, and obese populations in 

humans (68-70). Sled dogs in this study were housed similarly and were not moved from kennel location 
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for the duration of this study. Control for housing/location eliminates the indoor/outdoor exposure 

gradient and exposure gradient from commuting, travel, etc. often seen in comparable human longitudinal 

studies. Lastly, unique physiological characteristics of sled dogs make them more susceptible to health 

effects from air pollution. Sled dogs on average have over three times the VO2 max of humans, so they 

breathe in more PM2.5 and oxygen per unit body weight than humans (71). Also, sled dogs are typically 

fed a high fat diet and fat in metabolism is highly susceptible to damage from oxidative stress (72, 73).

2.2 Materials and Methods

Study protocol was approved by the University of Alaska Fairbanks Institutional Animal Care 

and Use Committee (# 681912-4). All dogs were privately owned and owner consent was obtained prior 

to enrollment in this study.

2.2.1 Animals

48 adult racing sled dogs, Canis lupus familiaris, were enrolled in the study. Ages ranged from 1

10 years old (5.21 years ± 2.80). Dogs were individually housed in the same kennel located in Salcha, 

AK (64.5611° N, 146.9516° W). Owner feeding, housing and care was unchanged over the course of the 

study, other than exercise and supplementation as described in “Experimental Design”, under “Exercise”, 

and “Diet”, respectively.

2.2.2 Experimental Design

The 48 dogs (24 M, 24 F) were matched for age and sex by owners and equally divided into four 

groups of 12. All dogs were randomly assigned to receive either 0.5 g/day of spirulina, Arthrospira 

platensis, or 0.5 g/day maltodextrin, as a control. Both spirulina and maltodextrins were encapsulated and 

owners or kennel staff administered one capsule directly into each dog's food at feeding time. Dogs were 

equally divided into exercise and non-exercise (sedentary) groups by owners (see Table 2.2.2.1). Group E 

+ S ( 4.58 years ± 2; 5 M, 7 F) was exercised and supplemented; group E (4.58 years ± 3;6 M, 6 F) was 
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exercised and not supplemented; group S (5.83 years ± 3; 6 M, 6 F) was sedentary but was supplemented;

Control (5.75 years ± 3; 7 M, 5 F) was sedentary and was not supplemented.

Table 2.2.2.1 Age and sex of sled dogs used in this study. Dogs were matched for age and sex by 
owners and supplementation was randomized. Exercise was assigned based on the dog's ability to 
undergo exercise regimen.

Exercise Sedentary

Supplemented 
(0.5 g spirulina daily)

E + S
(4.58 years ± 2; 5 M, 7 F)

S
(4.58 years ± 3; 6 M, 6 F)

Not supplemented E
(5.83 years ± 3; 6 M, 6 F)

Control
(5.75 years ± 3; 7 M, 5 F)

Baseline sampling was conducted on May 15, 2015 prior to forest fire exposure and 

supplementation started that afternoon. Dogs then began exercise and training regimen the day following 

baseline sample collection. Four weeks later, a second intervention sample was collected on June 12, 

2015 prior to a forest fire event to account for potential changes from one month of supplementation and 

exercise regimen. Heavy forest fire smoke blew in on the early evening of June 23, 2015, and daily 

PM2.5 levels well exceeded the 24-hour limit of 35 μg∕m3 set forth by the primary and secondary 

standards of the Clean Air Act of 1990 (see Table 2.2.2.2 for daily averages of PM2.5 levels). (74) 24h 

peak exposure was taken on the morning of June 24, 2015, during peak PM2.5 levels. A second mid

forest fire collection (48h peak exposure) was taken on the following morning, June 25, 2015, while 

PM2.5 was still elevated. One final collection (post-exposure) was taken after the 24-hour average PM2.5 

levels fell below 35 μg∕m3 on June 29, 2015.

The Fairbanks North Star Bureau Air Quality Division measured PM2.5 levels. Continuous 

Particulate Monitors from Met One Instruments, Inc. (model: BAM 1020X) were placed in two locations 

in North Pole (approximately 25 km away, NCORE: 64.84569, -147.727413, and North Pole Fire Station 

#3: 64.762973, -147.310297) throughout the duration of the study. Due to the amount of smoke in the 
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Salcha area, the FNSB Air Quality Division put another continuous particulate monitor (model: BAM

1020X) at Eielson Air Force Base (64.672603N, -147.35454W) on June 24, 2015 throughout the duration 

of the study (approximately 10 km from kennel location).

Table 2.2.2.2 Mean daily PM2.5 levels on collection days near kennel-site

N Core North Pole Fire Station

M (μg∕m3) SD M (μg∕m3) SD

baseline (5/15/2015) 7.92 3.19 17.25 16.46

intervention (6/12/2015) 3.46 1.89 5.00 1.51

24h peak exposure (6/24/2015) 184.61 42.39 165.67 45.58

48h peak exposure (6/25/2015) 137.25 79.91 100.54 47.75

post-exposure (6/29/2015) 10.54 7.97 9.87 4.98

*Air Data: Air Quality Data Collected at Outdoor Monitors Across the US, United States Environmental 
Protection Agency, retrieved on: 03-24-2018

2.2.3 Diet

Sled dogs were all fed the same commercially available ration (30% protein, 20% fat) mixed with 

approximately 0.5 L of water once per day (between 2:00-4:00 pm) and approximately 4 L of water was 

consistently available for each dog through the duration of the study (May 15 - June 29, 2015). All dogs 

were fed an amount to maintain an ideal body condition score of 4 (scale, 1 to 9) as validated by 

Laflamme for dogs (75). Owners and kennel staff adjusted amount of food to ensure body condition score 

remained unchanged through the duration of the study. In order to blind owners and kennel staff, spirulina 

and maltodextrin were both encapsulated and one capsule was administered in the food of each dog 

during feeding. Supplementation began the same day as the first baseline collection on May 15, 2015 and 

ended after the final collection on June 29, 2015.
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2.2.4 Exercise

Exercise regimen began the day after baseline collection. Dogs were not exercised during 

elevated PM2.5 from forest fire smoke, and the last exercise bout was on June 19, 2015. Exercise 

consisted of 1-2 hour sessions once to twice per week on an exercise wheel. The exercise wheel allows 

for 10 dogs to be exercised at the same time at a moderate trot of approximately 15 km/h to 20 km/h. 

Halfway through each exercise session, owners or kennel staff would alternate direction of the exercise 

wheel from counter-clockwise to clockwise or vice versa. This study was conducted in the late spring and 

early summer and, in order to not risk overheating the dogs, exercise was ceased if daily temperature rose 

above 16°C.

2.2.5 Blood Sampling

Dogs were bled between 7:30 - 10:00 am the morning of all five collections: baseline, 

intervention, 24h peak exposure, 48h peak exposure, and post-exposure. Dogs were bled in a fasted state, 

more than 12 hours after feeding. Eight mL of blood was drawn by cephalic venipuncture via a 21-gauge 

needle into three 5 mL heparinized Vacutainer tubes. Tubes were immediately centrifuged at 2500×g for 

10 min at 5°C, and plasma was immediately transferred into freezer vials, flash frozen in liquid nitrogen, 

and stored at -70°C until analysis was conducted.

2.2.6 Biochemical Analyses

Superoxide Dismutase (Cayman Chemical, Item No. 706002) and Total Antioxidant Power 

(Oxford Biomedical Research, #TA02) were measured with commercial assays according to 

manufacturers' instructions. The Superoxide Dismutase assay kit used a tetrazolium salt to detect the 

amount of superoxide radicals that were generated by xanthine oxidase and hypoxanthine. One unit of 

SOD (this kit measured all three SOD isoforms: Cu/Zn, Mn, and FeSOD) in the sample was defined as 

the amount of enzyme needed to dismutate 50% of a superoxide radical. Sample concentrations were 

compared against a bovine erythrocyte SOD (Cu/Zn) standard and interpolated from a standard curve.
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Total Antioxidant Power was determined based on the antioxidant ability of the sample to reduce Cu+2 to 

Cu+1 compared to a Trolox standard. Sample concentrations were interpolated from a standard curve.

2.2.7 Statistics

Non-parametric tests were used because data for each variable was not normally distributed. Data 

for each variable was normalized with respect to their baseline values by dividing value at each time point 

over baseline. For each variable, the Kruskall-Wallis test was used to compare the effect of time in 

normalized data. To assess whether exercise and/or supplementation had an effect during the course of the 

study, the Mann-Whitney test was used as a follow-up test to find significant differences between groups 

E+S, E, S, and Control at each time point. All statistical tests were conducted using the statistical software 

SPSS and significant differences were reported when P ≤ 0.05.

2.3 Results

SOD and TAP levels for all conditions were normalized with respect to their baseline values and 

statistical analysis was conducted on normalized data.

For SOD level, we found a significant main effect of time for all the groups using the Kruskall- 

Wallis test (Table 2.3.1). Follow-up Mann-Whitney U tests revealed that intervention was significantly 

different from 24h peak exposure in all groups (U = 14.00, p = 0.002, U = 9.00, p < 0.001, U = 19.00, p = 

0.002, U = 10.00, p < 0.001; for E+S, E, S, and Control, respectively) and from post-exposure in E group 

only (U = 33.00, p = 0.024). In addition, 24h peak exposure was significantly different from 48h peak 

exposure and post-exposure for all groups (U = 12.00, p = 0.001, U = 16.00, p = 0.001, U = 31.00, p 

0.018, U = 20.00, p = 0.003; for E+S, E, S, and Control, respectively). The significances of normalized 

SOD levels over time are found in Figure 2.3.1.

For TAP level, we found a significant main effect of time for E+S group only (Table 2.3.1). 

Follow-up Mann-Whitney U tests for E+S group revealed that 24h peak exposure was significantly 
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different from 48h peak exposure (U = 34.00, p = 0.028) and post-exposure (U = 34.00, p = 0.028). The 

significances of normalized TAP levels over time are found in Figure 2.3.2.

For SOD and TAP levels, we found a significant effect between groups in normalized data at 

intervention using the Kruskall-Wallis test (Figure 2.3.3 and Figure 2.3.4, respectively). Follow up Mann- 

Whitney U tests revealed that E was significantly different from S (U = 38, p = 0.05) and Control (U = 

29, p = 0.009) in SOD at intervention. For TAP levels during intervention, E was significantly different 

from all other groups: E + S (U = 31, p = 0.018), S (U = 26, p = 0.008), and Control (U = 27, p = 0.013) 

respectively. We found no other differences between groups at any other time point.

24 hour average PM2.5 values are presented in Table 2.2.2.1 from two different locations near the 

kennel.

Table 2.3.1 Effect of time on normalized SOD and TAP levels in sled dogs using the Kruskall-Wallis 
test. The Kruskall-Wallis test was used to find significant differences between one or more time points in 
each group for both normalized SOD and TAP. Significance was reported at p ≤ 0.05 and follow-up 
Mann-Whitney tests were conducted to test the differences between or within groups (significance shown 
in Figure 2.3.1, Figure 2.3.2, Figure 2.3.3, and Figure 2.3.4).

Normalized SOD Normalized TAP

E+S χ2(3) = 17.08, p = 0.001 χ2(3) = 8.34, p = 0.04

E χ2(3) = 19.59, p < 0.001 χ2(3) = 3.86, p = 0.28

S χ2(3) = 11.32, p = 0.010 χ2(3) = 5.98, p = 0.11

Control χ2(3) = 15.71, p = 0.001 χ2(3) = 5.79, p = 0.12
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Figure 2.3.1 Normalized SOD levels before, during and after forest fire smoke exposure. SOD levels 
were normalized with respect to their baseline values. Significance was reported at p ≤ 0.05 on 
differences within groups over the different time points in this study: intervention, 24h peak exposure, 
48h peak exposure, and post-exposure. Intervention was measured to test the effects of one month of 
antioxidant supplementation and/or exercise regimen. 24h peak exposure and 48h peak exposure 
measured the response during forest fire smoke exposure and post-exposure measured the response after 
smoke dissipated. For significant differences between groups in normalized SOD, see Figure 2.3.3. Error 
bars: 95% confidence intervals.

* E was significantly higher at post-exposure than intervention.
** All groups had significantly increased SOD levels at 24h peak exposure compared to intervention, 48h 
peak exposure, and post-exposure.
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Figure 2.3.2 Normalized TAP levels before, during and after forest fire smoke exposure. TAP levels 
were normalized with respect to their baseline values. Significance was reported at p ≤ 0.05 on 
differences within groups over the different time points in this study: intervention, 24h peak exposure, 
48h peak exposure, and post-exposure. Intervention was measured to test the effects of one month of 
antioxidant supplementation and/or exercise regimen. 24h peak exposure and 48h peak exposure 
measured the response during forest fire smoke exposure and post-exposure measured the response after 
smoke dissipated. For significant differences between groups in normalized TAP, see Figure 2.3.4. Error 
bars: 95% confidence intervals.

* E+S had significantly higher normalized TAP levels at 48h peak exposure than 24h peak exposure. 
** E+S had significantly higher normalized TAP levels at post-exposure than 24h peak exposure.
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Figure 2.3.3 Differences between normalized SOD levels after one month of intervention.
Normalized SOD levels between groups are shown after one month of antioxidant supplementation and/or 
exercise regimen. Mann-Whitney U tests were conducted to determine significance at p ≤ 0.05 between 
groups due to the effect of antioxidant supplementation and/or exercise regimen. Error bars: 95% 
confidence intervals.

* E was significantly lower after one month of intervention than S. 
** E was significantly lower after one month of intervention than Control.
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Figure 2.3.4 Differences between normalized TAP levels after one month of intervention. 
Normalized TAP levels between groups are shown after one month of antioxidant supplementation and/or 
exercise regimen. Mann-Whitney U tests were conducted to determine significance at p ≤ 0.05 between 
groups due to the effect of antioxidant supplementation and/or exercise regimen. Error bars: 95% 
confidence intervals.

* E was significantly higher than all other groups after one month of intervention.
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2.4 Discussion

Our study examined how exercise and supplementation regimen changed measures of 

endogenous and exogenous antioxidant defense in sled dogs during exposure to PM2.5 from forest fire 

smoke. PM2.5 is known to cause inflammation of lung tissue, as well as increased morbidity and 

mortality in humans (12, 14). Using the sentinel sled dog model to minimize lifestyle variability, our 

findings were fourfold: (1) SOD activity increased 10-fold in all dogs in the first 24 hours of exposure to 

forest fire smoke (see Figure 2.3.1). (2) SOD activity was increased at post-exposure compared to 

intervention in the E group only (see Figure 2.3.1). (3) After one month of supplementation and exercise, 

the exercise group had a significantly higher TAP level than all other groups and a significantly lower 

SOD level than supplementation and control groups (see Figure 2.3.3 and Figure 2.3.4). (4) TAP levels 

for E+S at 24h peak exposure was significantly lower than at the 48h peak exposure and post-exposure 

(see Figure 2.3.2).

While between-group effects of supplementation and exercise will be discussed later, we will first 

discuss our main finding: the 10-fold increase in SOD during forest fire smoke exposure. Increased SOD 

levels during exposure is consistent with the literature (45, 76) (see below) with the exception of one 

study that found decreased SOD levels compared to reference range in rural, Nigerian women and 

children, who cook with biomass resulting in household PM2.5 greater than 1,000 μg∕m3 (77). However, 

malnutrition has been shown to decrease SOD levels and the authors admitted they did not account for 

malnutrition and a lack of dietary intake of antioxidants. It is also possible that SOD activity was 

decreased because of long-term chronic exposure to PM2.5 from cooking for years with biomass.

In a longitudinal design measuring SOD activity in response to PM2.5 pollution, Wu and 

colleagues studied college students who moved from a suburban campus to an urban campus in Beijing, a 

known hot spot for poor air quality and high PM2.5 levels (45). EC-SOD was increased up to 6% over the 

course of one week after students moved to the Beijing campus. SOD levels were elevated for a week, 

similar to our study time frame; however, the magnitude of change in SOD activity was lower than our 

study. EC-SOD is the major isoenzyme of SOD found in plasma and extracellular space, including the 
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lungs (major location of deposition of inhaled PM2.5) (78). This suggests that the increase in overall SOD 

in plasma in our study maybe the result of increased expression of EC-SOD.

Nesi and colleagues showed that SOD levels were significantly higher in mice exposed to ~ 8 

weeks of cigarette smoke and/or an exercise regimen compared to a control (76). While the duration of 

exposure in our study was much shorter, we yielded a similar response. The chronically high SOD levels 

in mice may be because of the constant high amount of cigarette smoke exposure. Mice were placed in an 

exhalation chamber for a total of 72 minutes every day and exposed to smoke from 12 commercially 

filtered cigarettes resulting in a particulate matter level of 300 mg/m3. In contrast, sled dogs in our current 

study had high, continuous exposure to PM2.5 from forest fire smoke for approximately one week. Nesi 

et al. exposed mice to more than 1,500 times more concentrated PM2.5 than the peak levels in our study 

and 8,500 times more concentrated than the current EPA air quality standard of 35 μg∕m3 for PM2.5. Sled 

dogs in this study were exposed to a peak PM2.5 hourly level of 258 μg∕m3.

Wu et al. suggest that SOD will increase initially during PM2.5 exposure, but then decrease over 

time (45). SOD has a relatively short half-life and our data suggests constant expression and synthesis. 

The decrease over time could be attributed to the increased energy demand by cells to produce the large 

increase in SOD during times of stress.

We believe that our study and the work done by Nesi and colleagues suggest SOD could have 

clinical application as a biomarker for the acute, inflammatory response as it had a magnitude change 

reflective of acute phase response proteins such as C-reactive protein. In order to see correlation between 

SOD and inflammatory markers, it would be a valuable approach to monitor the impact of stressors 

during air pollution events like fires. To confirm this we plan to measure inflammatory biomarkers (nitric 

oxide, C-reactive protein, hydroxynonenol, nitrotyrosine, and MCP-1) from the remaining samples taken 

from the animals during the present study. Future studies should look for correlation between SOD and 

other biomarkers to more completely characterize the inflammatory response.

Supplementation and exercise are commonly recommended for improved health and sled dogs are 

excellent research models for these interventions. This study reveals that Control had the largest increase 
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in SOD levels from baseline compared to groups E, S and E + S, during 24h peak exposure and post

exposure, as expected. E had elevated SOD levels during post-exposure compared to intervention. 

Interestingly, E+S had significantly elevated TAP levels at 48h peak exposure and post-exposure when 

compared to 24h peak exposure. This suggests that Control had a larger initial response to PM2.5 but 

circulating antioxidants were higher in both exercise groups (E, E+S) over the following days after peak 

exposure, suggesting exercise and/or supplementation groups were pre-adapted to handle the stress.

All supplementation was random; some of the dogs were selected on ability to undergo a summer 

training regimen to prepare for the following year's race team. Most of the dogs that exercised in this 

study may have had cumulative effects of previous winter-training protocol and this was reflected in 

nearly significant SOD levels that trended higher in dogs who exercised regularly over the previous 

winter (results not reported because of non-significance). A higher trending SOD level in the exercise 

group supports the concept that oxidative stress from exercise regimen can pre-adapt endogenous 

antioxidant response long-term. The nearly significant difference in SOD between exercise groups in our 

study may have contributed to some of the SOD level differences we found between groups at different 

time points.

It was unexpected to see only one significant increase in TAP level during smoke exposure as 

SOD had such a large magnitude of change and is one of the antioxidant molecule moieties that 

contribute to overall TAP. However, our measurement of TAP was based on the ability of sample plasma 

to reduce copper, so many other enzymes and antioxidant molecules contribute to changes in overall 

TAP. It would be useful to measure more antioxidant biomarkers such as enzymes GPx and CAT and 

other dietary antioxidants, especially antioxidants supplied in the commercially available kibble (e.g., 

vitamin E).

Our largest significant difference between groups at one time point was with TAP one month 

after implementing exercise and supplementation regimen. TAP levels at intervention were significantly 

higher in E than the other groups (see Figure 2.3.4). Although not statistically significant, the E group 
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showed lower trending SOD levels during the peak forest fire collection than other groups - suggesting a 

protective, pre-adaptive role of exercise in dogs during PM2.5-induced oxidative stress from air pollution.

Several studies show an effect of exercise regimen on a similar measure to TAP (79

81). Although our results suggest higher levels of antioxidant capacity in exercised groups, it is possible 

we didn't see much change in TAP over the course of the study because dogs were exercised less due to 

ambient temperatures (large contributing factor for forest fire event in this study), and dogs exercised at 

low intensity. Dogs were exercised 1-2 times per week on an exercise wheel at speeds ranging from 8-14

the same intensity, but temperatures were too warm to exercise some mornings or increased morning 

temperatures caused kennel staff to shorten the duration of exercise sessions.

Measures of total antioxidants tend to change more with high intensity exercise (82). Dogs in this 

study exercised at approximately 40% VO2 max (for reference: long slow distance training in humans is 

between 60-70% VO2 max and these same dogs race between 80-90% VO2 max in the winter). If higher 

intensity exercise pre-adapts total antioxidant status, it would be interesting to increase intensity of 

exercise protocol prior to environmental stressors. One way to increase exercise intensity in the warm 

summer months is free running (dogs run loose for 3-8 miles chasing or running ahead of ATVs at speeds 

over 20 mph). Future studies using an exercise regimen to pre-adapt sled dogs to environmental pollution 

should increase intensity, duration and/or frequency of exercise to yield a more pronounced effect of the 

measurable cellular adaptations of repeated exercise.

It seems that spirulina supplementation had less of an overall effect than exercise. However, 

supplementation with spirulina might have played a synergistic role with exercise to protect dogs from 

forest fire smoke exposure. TAP levels were significantly higher 48h peak exposure and post-exposure 

compared to 24h peak exposure in the E+S group (see Figure 2.3.2). As mentioned before, TAP was 

increased after one month of exercise (not supplementation) in our study and many other studies show an 

increase in measures similar to TAP after exercise regimen. Since regular exercise (1) lowers the risk for 

all-cause mortality, many oxidative stress related diseases (e.g., diabetes) and PM2.5-induced disease 
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states (e.g., cardiovascular disease) and (2) increased antioxidant capacity likely contributes to the health 

benefits of repeated exercise, then our finding might suggest that both exercise and supplementation were 

pre-adaptive to forest fire smoke exposure. Further examination into markers of damage is needed to 

determine if both exercise regimen and antioxidant supplementation were cytoprotective as elevated 

antioxidant status does not always correlate with lower markers of oxidative damage (76).

It is believed that much of the antioxidant potential of spirulina is due to PCB in phycocyanin. 

Studies feeding spirulina to rats and mice have dosage ranges of 1-6.6 mg(PCB)/kg(bodyweight)/day. 

Sled dogs typically weigh between 20-30 kg, so the spirulina dosage of 0.5 g/day that was used in this 

study amounts to 3.33 mg PCB, which is approximately 10-fold lower concentration of PCB per unit 

body weight than used in rodent studies (53). By increasing the dosage of dried spirulina to 5 g/day, the 

volume would be less than one tablespoon and would still be practical to feed to dogs and the antioxidant 

benefits of spirulina may be more pronounced. In humans, it has been suggested to supplement with 

approximately 30 g/day of spirulina, which is about two heaping tablespoons (53).

2.5 Conclusion

In this study we have shown exposure to PM2.5 from forest fire smoke is associated with an acute 

increase in the endogenous antioxidant SOD in sled dogs. Due to the observed acute response in SOD, it 

is possible that SOD can be used clinically to monitor impact of environmental stress on humans and 

other animals. However, further investigation on the correlation between SOD and other inflammatory 

markers is needed.

While the benefits of a healthy diet and exercise regimen have been touted as prevention for 

many chronic diseases, this is the first study to look at the impact of diet and exercise intervention on 

handling environmental stress. Our study suggests that there may be application for lifestyle intervention 

in handling stress from PM2.5.
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Chapter 3 Conclusions and Future Directions

In this study we have shown that exposure to PM2.5 from forest fire smoke causes an acute 

increase in the endogenous antioxidant SOD in sled dogs. Due to the acute response of SOD during the 

smoke exposure event, it is possible that SOD can be used clinically to monitor the impact of 

environmental stress on humans and other animals. However, further investigation on the correlation 

between SOD and other inflammatory and oxidative and nitrosative damage markers are needed. 

Confirming biomarkers that could be studied include nitric oxide, C-reactive protein, hydroxynonenal, 

and nitrotyrosine.

The benefits of healthy diet and exercise regimens have been touted as prevention for many 

chronic diseases. This is the first study to look at the impact of diet and exercise intervention on handling 

environmental stress. Our study suggests that there may be application for lifestyle intervention in 

handling stress from PM2.5. The between group effects of exercise and supplementation showed 

significant differences in SOD during the forest fire; TAP showed between group differences before the 

forest fire event.

The antioxidant response of cells over the course of an exercise regimen and environmental 

stressors is complex and relatively unknown as it involves the interaction between several enzymes, 

dietary sources, and other functional molecules. Measuring other antioxidant response markers in a 

similar study design should elucidate a more complete understanding of the defense response. This is 

evident in the present study as we found a paradoxical non-increase in TAP during the forest fire while 

SOD increased nearly 10-fold in all dogs. TAP is a measure of all antioxidants in the sample that can 

reduce copper and includes SOD as a moiety. Our findings would suggest that it is possible that (1) the 

concentration of SOD in plasma is relatively little compared to all other antioxidant molecules or more 

likely, (2) other antioxidant moieties measured in TAP were consumed during the forest fire. Thus, more 

research on other measurable antioxidants and their associations with TAP should be conducted.
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It would be interesting to use the sled dog model to periodically (i.e. monthly) measure 

biomarkers for antioxidant status and investigate different seasonal exercise protocols and dietary changes 

in the annual cycle of a racing kennel. Generally, dogs switch to kibble-only diets in the summertime 

(difficult to store frozen meat over the warmer summer months) and exercise is non-existent or limited to 

long slow distance sessions. When ambient temperatures fall in August and September, harness training 

commences concurrently with dietary changes, usually including the addition of raw meat and other 

supplements (fish oil, protein powders, bone meal, vitamins, antioxidants, etc.). The first phase of training 

is to build a general aerobic base and strengthen musculature to the increased distance and speed demands 

of training. After the bulk of training finishes in December or January, racing season runs through early 

April. Mushers generally decrease training volume to peak teams for competition in these four months. 

Following the end of race season in April, there is a sedentary period as trail conditions are not good for 

running in harness on a sled or ATV.

By providing seasonal changes in diet, training volume, and races, the sled dog model could shed 

light on potential efficacy of antioxidant supplementation as antioxidant status will likely be changed over 

the seasonal change of exercise and diet protocols at many racing kennels. This would include further 

investigation into the “de-conditioning” phase at the end of race season before summer training can begin 

(exercise is limited because snow melt/muddy trails cause loss of trail access). To recap, we nearly found 

significance between dogs that had exercised regularly during the winter and dogs that were sedentary.

Sled dogs in Fairbanks, Alaska area are subjected to PM2.5 exposure throughout the year from 

forest fire smoke, as in this study, and in the winter-time from temperature inversion induced smog. 

Temperature inversions trap anthropogenic PM2.5 sources (mostly from wood and coal burning) in the 

immediate atmosphere so PM2.5 levels regularly exceed the EPA standard of 35 μg∕m3. By conducting a 

year-long, repeated measures study, we could provide further opportunity to look at lifestyle intervention 

(acute and chronic exercise and supplementation) in response to both acute and chronic PM2.5 exposure.
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Appendices

Figure A-1 Mean SOD values from raw data over the course of this study. There were five 
collections in this study: baseline, intervention, 24h peak exposure, 48h peak exposure and post-exposure 
and four different treatment groups: E+S, E, S, and Control. Error bars: 95% Confidence intervals.
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Figure A-2 Mean TAP values from raw data over the course of this study. There were five 
collections in this study: baseline, intervention, 24h peak exposure, 48h peak exposure and post-exposure 
and four different treatment groups: E+S, E, S, and Control. Error bars: 95% Confidence intervals.
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