168 research outputs found

    Impact of multiangular information on empirical models to estimate canopy nitrogen concentration in mixed forest

    Full text link
    Directional effects in remotely sensed reflectance data can influence the retrieval of plant biophysical and biochemical estimates. Previous studies have demonstrated that directional measurements contain added information that may increase the accuracy of estimated plant structural parameters. Because accurate biochemistry mapping is linked to vegetation structure, also models to estimate canopy nitrogen concentration (CN) may be improved indirectly from using multiangular data. Hyperspectral imagery with five different viewing zenith angles was acquired by the spaceborne CHRIS sensor over a forest study site in Switzerland. Fifteen canopy reflectance spectra corresponding to subplots of field-sampled trees were extracted from the preprocessed CHRIS images and subsequently two-term models were developed by regressing CN on four datasets comprising either original or continuum-removed reflectances. Consideration is given to the directional sensitivity of the CN estimation by generating regression models based on various combinations (n=15) of observation angles. The results of this study show that estimating canopy CN with only nadir data is not optimal irrespective of spectral data processing. Moreover adding multiangular information improves significantly the regression model fits and thus the retrieval of forest canopy biochemistry. These findings support the potential of multiangular Earth observations also for application-oriented ecological monitoring

    Extraction of ozone and chlorophyll-A distribution from AVIRIS data

    Get PDF
    The potential of airborne imaging spectrometry for assessing and monitoring natural resources is studied. Therefore, an AVIRIS scene of the NASA's MacEurope 1991 campaign - acquired in Central Switzerland - is used. The test site consists of an urban area, the Lake Zug with its surrounding fields, the Rigi mountain in the center of the test site, and the Lake of Four Cantons. The region is covered by the AVIRIS flight #910705, run 6 and 7 of the NASA ER-2 aircraft resulting in an average nominal pixel size of about 18 m. Simultaneous to the ER-2 overflight spectroradiometric measurements have been taken in various locations. Preselected reference targets were measured in the field with a GER Mark V spectroradiometer, and radiance measurements were taken to the lake using a Li-Cor LI 1800UW specroradiometer below and above the water surface. A comprehensive meteorological data set was obtained by joining the POLLUMET experiment which carried out measurements to investigate the summer smog in Switzerland on the same day. The quality assessment for the actual data set can be found in detail in Meyer et al. A parametric approach calculating the location of the airplane was used to simulate the observation geometry. This parametric preprocessing procedure, which takes care of effects of flight line and attitude variations as well as the pixel-by-pixel topographic corrections is described in Meyer

    'The world is full of big bad wolves': investigating the experimental therapeutic spaces of R.D. Laing and Aaron Esterson

    Get PDF
    In conjunction with the recent critical assessments of the life and work of R.D. Laing, this paper seeks to demonstrate what is revealed when Laing’s work on families and created spaces of mental health care are examined through a geographical lens. The paper begins with an exploration of Laing’s time at the Tavistock Clinic in London during the 1960s, and of the co-authored text with Aaron Esterson entitled, Sanity, Madness and the Family (1964). The study then seeks to demonstrate the importance Laing and his colleague placed on the time-space situatedness of patients and their worlds. Finally, an account is provided of Laing’s and Esterson’s spatial thinking in relation to their creation of both real and imagined spaces of therapeutic care

    Colour semantics in residential interior architecture on different interior types

    Get PDF
    Colour meaning is a challenging decision in interior architecture during the design process; however, specific meanings within different interior types have not yet been investigated. This study explored colour meaning in the context of residential interior types (eg, bedroom) under controlled conditions using 42 Munsell colours varying in hues, value, and chroma levels, with 14 adjectives (eg, comfortable, pleasant). The results demonstrate that some colours convey the same meanings (eg, vulgar) regardless of type of room; however, others (eg, beautiful) tend to require more complicated and sophisticated colour applications in different residential interiors. The study findings proved that colour meaning in RITs can be affected by all colour attributes. All colours that are named orange and red are selected for both negative and positive meanings. Colours that are named purple are selected less and only for negative connotations. The findings present an overall colour meaning guide for these residential interior types, which will be beneficial for decision makers (interior architects, designers, users) and colour researchers

    2nd generation of RSL’s spectrum database SPECCHIO

    Full text link
    The organised storage of spectral data described by according metadata is important for long term use and data sharing with other scientists. The recently redesigned SPECCHIO system acts as a repository for spectral field campaign and reference signatures. An analysis of metadata space has resulted in a non-redundant relational data model and efficient graphical user interfaces with underlying processing mechanisms minimizing the required user interaction during data capture. Data retrieval is based on imposing restrictions on metadata space dimensions and the resulting dataset can be visualised on screen or exported to files. The system is based on a relational database server with a Java application providing the user interface. This architecture facilitates the operation of the system in a heterogeneous computing environment

    Social and content hybrid image recommender system for mobile social networks

    Get PDF
    One of the advantages of social networks is the possibility to socialize and personalize the content created or shared by the users. In mobile social networks, where the devices have limited capabilities in terms of screen size and computing power, Multimedia Recommender Systems help to present the most relevant content to the users, depending on their tastes, relationships and profile. Previous recommender systems are not able to cope with the uncertainty of automated tagging and are knowledge domain dependant. In addition, the instantiation of a recommender in this domain should cope with problems arising from the collaborative filtering inherent nature (cold start, banana problem, large number of users to run, etc.). The solution presented in this paper addresses the abovementioned problems by proposing a hybrid image recommender system, which combines collaborative filtering (social techniques) with content-based techniques, leaving the user the liberty to give these processes a personal weight. It takes into account aesthetics and the formal characteristics of the images to overcome the problems of current techniques, improving the performance of existing systems to create a mobile social networks recommender with a high degree of adaptation to any kind of user

    Aesthetic response to color combinations: preference, harmony, and similarity

    Get PDF
    Previous studies of preference for and harmony of color combinations have produced confusing results. For example, some claim that harmony increases with hue similarity, whereas others claim that it decreases. We argue that such confusions are resolved by distinguishing among three types of judgments about color pairs: (1) preference for the pair as a whole, (2) harmony of the pair as a whole, and (3) preference for its figural color when viewed against its colored background. Empirical support for this distinction shows that pair preference and harmony both increase as hue similarity increases, but preference relies more strongly on component color preference and lightness contrast. Although pairs with highly contrastive hues are generally judged to be neither preferable nor harmonious, figural color preference ratings increase as hue contrast with the background increases. The present results thus refine and clarify some of the best-known and most contentious claims of color theorists

    Gender-related differences in physiologic color space: a functional transcranial Doppler (fTCD) study

    Get PDF
    Simultaneous color contrast and color constancy are memory processes associated with color vision, however, the gender-related differences of 'physiologic color space' remains unknown. Color processing was studied in 16 (8 men and 8 women) right-handed healthy subjects using functional transcranial Doppler (fTCD) technique. Mean flow velocity (MFV) was recorded in both right (RMCA) and left (LMCA) middle cerebral arteries in dark and white light conditions, and during color (blue and yellow) stimulations. The data was plotted in a 3D quadratic curve fit to derive a 'physiologic color space' showing the effects of luminance and chromatic contrasts. In men, wavelength-differencing of opponent pairs (yellow-blue) was adjudged by changes in the RMCA MFV for Yellow plotted on the Y-axis, and the RMCA MFV for Blue plotted on the X-axis. In women, frequency-differencing for opponent pairs (blue-yellow) was adjudged by changes in the LMCA MFV for Yellow plotted on the Y-axis, and the LMCA MFV for Blue plotted on the X-axis. The luminance effect on the LMCA MFV in response to white light with the highest luminous flux, was plotted on the (Z - axis), in both men and women. The 3D-color space for women was a mirror-image of that for men, and showed enhanced color constancy. The exponential function model was applied to the data in men, while the logarithmic function model was applied to the data in women. Color space determination may be useful in the study of color memory, adaptive neuroplasticity, cognitive impairment in stroke and neurodegenerative diseases

    The Cultural Project : Formal Chronological Modelling of the Early and Middle Neolithic Sequence in Lower Alsace

    Get PDF
    Starting from questions about the nature of cultural diversity, this paper examines the pace and tempo of change and the relative importance of continuity and discontinuity. To unravel the cultural project of the past, we apply chronological modelling of radiocarbon dates within a Bayesian statistical framework, to interrogate the Neolithic cultural sequence in Lower Alsace, in the upper Rhine valley, in broad terms from the later sixth to the end of the fifth millennium cal BC. Detailed formal estimates are provided for the long succession of cultural groups, from the early Neolithic Linear Pottery culture (LBK) to the Bischheim Occidental du Rhin Supérieur (BORS) groups at the end of the Middle Neolithic, using seriation and typology of pottery as the starting point in modelling. The rate of ceramic change, as well as frequent shifts in the nature, location and density of settlements, are documented in detail, down to lifetime and generational timescales. This reveals a Neolithic world in Lower Alsace busy with comings and goings, tinkerings and adjustments, and relocations and realignments. A significant hiatus is identified between the end of the LBK and the start of the Hinkelstein group, in the early part of the fifth millennium cal BC. On the basis of modelling of existing dates for other parts of the Rhineland, this appears to be a wider phenomenon, and possible explanations are discussed; full reoccupation of the landscape is only seen in the Grossgartach phase. Radical shifts are also proposed at the end of the Middle Neolithic

    RCEA: Real-time, Continuous Emotion Annotation for collecting precise mobile video ground truth labels

    Get PDF
    Collecting accurate and precise emotion ground truth labels for mobile video watching is essential for ensuring meaningful predictions. However, video-based emotion annotation techniques either rely on post-stimulus discrete self-reports, or allow real-time, continuous emotion annotations (RCEA) only for desktop settings. Following a user-centric approach, we designed an RCEA technique for mobile video watching, and validated its usability and reliability in a controlled, indoor (N=12) and later outdoor (N=20) study. Drawing on physiological measures, interaction logs, and subjective workload reports, we show that (1) RCEA is perceived to be usable for annotating emotions while mobile video watching, without increasing users' mental workload (2) the resulting time-variant annotations are comparable with intended emotion attributes of the video stimuli (classification error for valence: 8.3%; arousal: 25%). We contribute a validated annotation technique and associated annotation fusion method, that is suitable for collecting fine-grained emotion annotations while users watch mobile videos
    corecore