38 research outputs found

    Changes in global ocean bottom properties and volume transports in CMIP5 models under climate change scenarios

    Get PDF
    Changes in bottom temperature, salinity and density in the global ocean by 2100 for CMIP5 climate models are investigated for the climate change scenarios RCP4.5 and RCP8.5. The mean of 24 models shows a decrease in density in all deep basins except the North Atlantic which becomes denser. The individual model responses to climate change forcing are more complex: regarding temperature, the 24 models predict a warming of the bottom layer of the global ocean; in salinity, there is less agreement regarding the sign of the change, especially in the Southern Ocean. The magnitude and equatorward extent of these changes also vary strongly among models. The changes in properties can be linked with changes in the mean transport of key water masses. The Atlantic Meridional Overturning Circulation weakens in most models and is directly linked to changes in bottom density in the North Atlantic. These changes are due to the intrusion of modified Antarctic Bottom Water, made possible by the decrease in North Atlantic Deep Water formation. In the Indian, Pacific and South Atlantic, changes in bottom density are congruent with the weakening in Antarctic Bottom Water transport through these basins. We argue that the greater the 1986-2005 meridional transports, the more changes have propagated equatorwards by 2100. However, strong decreases in density over 100 years of climate change cause a weakening of the transports. The speed at which these property changes reach the deep basins is critical for a correct assessment of the heat storage capacity of the oceans as well as for predictions of future sea level rise

    Dualismos em duelo

    Full text link

    The (fixed) urinary sediment, a simple and useful diagnostic tool in patients with haematuria.

    No full text
    Contains fulltext : 58669.pdf (publisher's version ) (Closed access)Examination of the urinary sediment is a simple and indispensable tool in the diagnostic approach to patients with asymptomatic haematuria. Various glomerular and nonglomerular diseases can cause haematuria. A well-trained expert can distinguish between these two forms of haematuria by examining the urinary sediment under a simple light microscope. In glomerular haematuria, dysmorphic erythrocytes and erythrocyte casts are found, whereas in nonglomerular haematuria the erythrocytes are monomorphic and erythrocyte casts are absent. However, few people have sufficient expertise in the examination of the urinary sediment, and consequently this investigation is performed far too seldom. A few years ago, a simple method of fixation of the urinary sediment became available. Fixed specimens can be stored at room temperature for at least two weeks, which enables the sending of a fixed specimen to an expert examiner by regular mail. In this way, the urinary sediment can more frequently be used as the initial investigation in the diagnostic route of patients with asymptomatic haematuria
    corecore