43 research outputs found

    How activists and target organizations collaborate in the face of emerging contingencies:setbacks and inaction: constraining or enablers of change?

    Get PDF
    In this paper, we attempt to examine the sources of agency of target organizations when engaged in collective change processes organized by activists concerned with environmental issues and sustainable development in the eastern part of the Netherlands. In combining social movement and institutional entrepreneurship literature, we examine why and how target organizations engage in collective action, change their practices, and adopt new ones in the pursuit of solving a common issue with the help of activists. We found that motivations and intentions to contribute to collective action were instrumental in the beginning of their participation. However, as the project evolves, intentions changed through a reorientation of existing practices and positions in the collective change process of target organizations. This shift was caused by inaction and other setbacks where target organizations and activists were exposed. These changes in turn, set in new practice development and organizational forms necessary to continue collective change. With these findings, we contribute to an understanding of network mobilization by showing the emergent and dynamic character of collective change and especially indicate setbacks and inaction as both constraining and necessary condition for change

    The High-Acceptance Dielectron Spectrometer HADES

    Get PDF
    HADES is a versatile magnetic spectrometer aimed at studying dielectron production in pion, proton and heavy-ion induced collisions. Its main features include a ring imaging gas Cherenkov detector for electron-hadron discrimination, a tracking system consisting of a set of 6 superconducting coils producing a toroidal field and drift chambers and a multiplicity and electron trigger array for additional electron-hadron discrimination and event characterization. A two-stage trigger system enhances events containing electrons. The physics program is focused on the investigation of hadron properties in nuclei and in the hot and dense hadronic matter. The detector system is characterized by an 85% azimuthal coverage over a polar angle interval from 18 to 85 degree, a single electron efficiency of 50% and a vector meson mass resolution of 2.5%. Identification of pions, kaons and protons is achieved combining time-of-flight and energy loss measurements over a large momentum range. This paper describes the main features and the performance of the detector system

    The HADES-at-FAIR project

    Get PDF
    After the completion of the experimental program at SIS18 the HADES setup will migrate to FAIR, where it will deliver high-quality data for heavy-ion collisions in an unexplored energy range of up to 8 A GeV. In this contribution, we briefly present the physics case, relevant detector characteristics and discuss the recently completed upgrade of HADES. © 2012 Pleiades Publishing, Ltd. 75 5 589 593 Cited By :

    Understanding precipitate evolution during friction stir welding of Al-Zn-Mg-Cu alloy through in-situ measurement coupled with simulation

    No full text
    Friction Stir Welding (FSW) imparts both heat and deformation to the metal being joined, producing profound microstructural changes that determine the weld properties. In the case of welding of aerospace aluminium alloys, the most important change is the modification of the size, nature, and fraction of strengthening precipitates. To understand these changes requires the ability to measure the microstructural evolution during the welding process. This paper describes a new tool, the FlexiStir system, a portable friction stir unit designed for use in a high-energy synchrotron beamline that enables in-situ studies of microstructural evolution during FSW. FlexiStir has been used to measure precipitate evolution during FSW of aluminium alloy 7449-TAF and provide time-resolved measurement of precipitate size and volume fraction via small angle X-ray scattering (SAXS). These measurements have been interpreted with the aid of a previously developed microstructural model. The model predictions and SAXS measurements are in good qualitative agreement and demonstrate the complex precipitate transformation, dissolution, and reprecipitation events that occur during welding. © 201

    Nitrous oxide and methane fluxes in south Brazilian gleysol as affected by nitrogen fertilizers Fluxos de óxido nitroso e de metano em gleissolo influenciados pela aplicação de fertilizantes nitrogenados no sul do Brasil

    Get PDF
    Nitrogen fertilizers increase the nitrous oxide (N2O) emission and can reduce the methane (CH4) oxidation from agricultural soils. However, the magnitude of this effect is unknown in Southern Brazilian edaphoclimatic conditions, as well as the potential of different sources of mineral N fertilizers in such an effect. The aim of this study was to investigate the effects of different mineral N sources (urea, ammonium sulphate, calcium nitrate, ammonium nitrate, Uran, controlled- release N fertilizer, and urea with urease inhibitor) on N2O and CH4 fluxes from Gleysol in the South of Brazil (Porto Alegre, RS), in comparison to a control treatment without a N application. The experiment was arranged in a randomized block with three replications, and the N fertilizer was applied to corn at the V5 growth stage. Air samples were collected from a static chambers for 15 days after the N application and the N2O and CH4 concentration were determined by gas chromatography. The topmost emissions occurred three days after the N fertilizer application and ranged from 187.8 to 8587.4 µg m-2 h-1 N. The greatest emissions were observed for N-nitric based fertilizers, while N sources with a urease inhibitor and controlled release N presented the smallest values and the N-ammonium and amidic were intermediate. This peak of N2O emissions was related to soil NO3--N (R² = 0.56, p < 0.08) when the soil water-filled pore space was up to 70 % and it indicated that N2O was predominantly produced by a denitrification process in the soil. Soil CH4 fluxes ranged from -30.1 µg m-2 h-1 C (absorption) to +32.5 µg m-2 h-1 C (emission), and the accumulated emission in the period was related to the soil NH4+-N concentration (R² = 0.82, p < 0.001), probably due to enzymatic competition between nitrification and metanotrophy processes. Despite both of the gas fluxes being affected by N fertilizers, in the average of the treatments, the impact on CH4 emission (0.2 kg ha-1 equivalent CO2-C ) was a hundredfold minor than for N2O (132.8 kg ha-1 equivalent CO2-C). Accounting for the N2O and CH4 emissions plus energetic costs of N fertilizers of 1.3 kg CO2-C kg-1 N regarding the manufacture, transport and application, we estimated an environmental impact of N sources ranging from 220.4 to 664.5 kg ha-1 CO2 -C , which can only be partially offset by C sequestration in the soil, as no study in South Brazil reported an annual net soil C accumulation rate larger than 160 kg ha-1 C due to N fertilization. The N2O mitigation can be obtained by the replacement of N-nitric sources by ammonium and amidic fertilizers. Controlled release N fertilizers and urea with urease inhibitor are also potential alternatives to N2O emission mitigation to atmospheric and systematic studies are necessary to quantify their potential in Brazilian agroecosystems.<br>Fertilizantes nitrogenados incrementam os fluxos de óxido nitroso (N2O) e podem deprimir a oxidação de metano (CH4) em solos agrícolas. Entretanto, não existem resultados da magnitude desses efeitos nas condições edafoclimáticas do Sul do Brasil, tampouco do potencial de algumas fontes de N em mitigar esses efeitos. O presente estudo objetivou avaliar o impacto da aplicação de fertilizantes nitrogenados (ureia, sulfato de amônio, nitrato de cálcio, nitrato de amônio, Uran, N de liberação lenta e ureia com inibidor de urease) nos fluxos de N2O e CH4 em um Gleissolo no Sul do Brasil (Porto Alegre, RS), em comparação a um tratamento controle sem aplicação de N. O experimento seguiu um delineamento de blocos ao acaso, com três repetições, e os fertilizantes foram aplicados, em cobertura, numa dose única de 150 kg ha-1 N, no estádio V5 da cultura do milho. A avaliação dos gases foi feita utilizando-se o método da câmara estática, nos 15 dias que sucederam a aplicação de N, e a análise das concentrações de N2O e CH4 nas amostras de ar foi realizada por meio de cromatografia gasosa. O pico de emissão de N2O ocorreu no terceiro dia após a aplicação dos fertilizantes nitrogenados e a sua intensidade variou de 187,8 a 8.587,4 µg m-2 h-1 N, destacando-se as fontes nítricas com as maiores emissões, as fontes amoniacais e amídicas com emissões intermediárias e os fertilizantes de liberação lenta e com inibidor de urease com as menores emissões. As emissões no terceiro dia tiveram relação direta com os teores de N-NO3- do solo (R² = 0,56, p < 0,08) e ocorreram quando este apresentava valores de porosidade preenchida por água (PPA) maiores que 70 %, o que indica que a desnitrificação foi o processo predominante na produção de N2O. Os fluxos de CH4 do solo variaram de -30,1 µg m-2 h-1 C (absorção) a +32,5 µg m-2 h-1 C (emissão), e a emissão acumulada desse gás teve relação direta com os teores de NH4+ no solo (R² = 0,82, p < 0,001), possivelmente pela competição enzimática entre os processos de nitrificação e de metanotrofia. Apesar de os fluxos de ambos os gases terem sido alterados pela aplicação dos fertilizantes nitrogenados, na média dos tratamentos, o impacto das emissões de CH4 (0,2 kg ha-1C-CO2 equivalente) foi centenas de vezes menor que o verificado para as emissões de N2O (132,8 kg ha-1 C-CO2 equivalente). Considerando as emissões desses gases no solo fertilizado e o custo médio de 1,3 kg C-CO2 kg-1 N referente à produção, transporte e aplicação do fertilizante, o impacto ambiental dos fertilizantes nitrogenados variou de 220,4 a 664,5 kg ha-1 C-CO2, o qual pode ser apenas parcialmente contrabalanceado pelo acúmulo de C na matéria orgânica do solo, pois nenhum estudo realizado no Sul do Brasil evidenciou taxa anual de acúmulo de C no solo, decorrente da adubação nitrogenada, maior que 160 kg ha-1 C. A redução das emissões de N2O do solo e, portanto, do impacto ambiental pode ser obtida pelo uso de fontes amoniacais e amídicas em detrimento de fontes nítricas. Os fertilizantes de liberação lenta e com inibidores de urease também são alternativas potenciais visando à mitigação das emissões de N2O para atmosfera, e esforços deverão ser empreendidos numa avaliação sistemática desse potencial em agroecossistemas brasileiros
    corecore