319 research outputs found

    The anisotropic hyperelastic biomechanical response of the vocal ligament and implications for frequency regulation: A case study

    Get PDF
    One of the primary mechanisms to vary one's vocal frequency is through vocal fold length changes. As stress and deformation are linked to each other, it is hypothesized that the anisotropy in the biomechanical properties of the vocal fold tissue would affect the phonation characteristics. A biomechanical model of vibrational frequency rise during vocal fold elongation is developed which combines an advanced biomechanical characterization protocol of the vocal fold tissue with continuum beam models. Biomechanical response of the tissue is related to a microstructurally informed, anisotropic, nonlinear hyperelastic constitutive model. A microstructural characteristic (the dispersion of collagen) was represented through a statistical orientation function acquired from a second harmonic generation image of the vocal ligament. Continuum models of vibration were constructed based upon Euler–Bernoulli and Timoshenko beam theories, and applied to the study of the vibration of a vocal ligament specimen. From the natural frequency predictions in dependence of elongation, two competing processes in frequency control emerged, i.e., the applied tension raises the frequency while simultaneously shear deformation lowers the frequency. Shear becomes much more substantial at higher modes of vibration and for highly anisotropic tissues. The analysis was developed as a case study based on a human vocal ligament specimen

    Vocal tract resonances in singing: variation with laryngeal mechanism for male operatic singers in chest and falsetto registers

    No full text
    International audienceSeven male operatic singers sang the same notes and vowels in their chest and their falsetto registers, covering the overlap frequency range where two main laryngeal mechanisms can be identified by means of electroglottography: M1 in chest register and M2 in falsetto register. Glottal contact quotients determined using electroglottography were typically lower by 0.27 in M2 than in M1. Vocal tract resonance frequencies were measured by using broadband excitation at the lips and found to be typically lower in M2 than in M1 sung at the same pitch and vowel; R1 typically by 65 Hz and R2 by 90 Hz. These shifts in tract resonances were only weakly correlated with the changes in the contact quotient or laryngeal height that were measured simultaneously. There was considerable variability in the resonance tuning strategies used by the singers, and no evidence of a uniform systematic tuning strategy used by all singers. A simple model estimates that the shifts in resonance frequencies are consistent with the effective glottal area in falsetto register (M2) being 60%-70% of its value in chest register (M1)

    IRE1β negatively regulates IRE1α signaling in response to endoplasmic reticulum stress

    Get PDF
    IRE1β is an ER stress sensor uniquely expressed in epithelial cells lining mucosal surfaces. Here, we show that intestinal epithelial cells expressing IRE1β have an attenuated unfolded protein response to ER stress. When modeled in HEK293 cells and with purified protein, IRE1β diminishes expression and inhibits signaling by the closely related stress sensor IRE1α. IRE1β can assemble with and inhibit IRE1α to suppress stress-induced XBP1 splicing, a key mediator of the unfolded protein response. In comparison to IRE1α, IRE1β has relatively weak XBP1 splicing activity, largely explained by a nonconserved amino acid in the kinase domain active site that impairs its phosphorylation and restricts oligomerization. This enables IRE1β to act as a dominant-negative suppressor of IRE1α and affect how barrier epithelial cells manage the response to stress at the host–environment interface

    Effect of formant frequency spacing on perceived gender in pre-pubertal children's voices

    Get PDF
    <div><p>Background</p><p>It is usually possible to identify the sex of a pre-pubertal child from their voice, despite the absence of sex differences in fundamental frequency at these ages. While it has been suggested that the overall spacing between formants (formant frequency spacing - ΔF) is a key component of the expression and perception of sex in children's voices, the effect of its continuous variation on sex and gender attribution has not yet been investigated.</p><p>Methodology/Principal findings</p><p>In the present study we manipulated voice ΔF of eight year olds (two boys and two girls) along continua covering the observed variation of this parameter in pre-pubertal voices, and assessed the effect of this variation on adult ratings of speakers' sex and gender in two separate experiments. In the first experiment (sex identification) adults were asked to categorise the voice as either male or female. The resulting identification function exhibited a gradual slope from male to female voice categories. In the second experiment (gender rating), adults rated the voices on a continuum from “masculine boy” to “feminine girl”, gradually decreasing their masculinity ratings as ΔF increased.</p><p>Conclusions/Significance</p><p>These results indicate that the role of ΔF in voice gender perception, which has been reported in adult voices, extends to pre-pubertal children's voices: variation in ΔF not only affects the perceived sex, but also the perceived masculinity or femininity of the speaker. We discuss the implications of these observations for the expression and perception of gender in children's voices given the absence of anatomical dimorphism in overall vocal tract length before puberty.</p></div

    Mathematics, Thermodynamics, and Modeling to Address Ten Common Misconceptions about Protein Structure, Folding, and Stability

    Get PDF
    To fully understand the roles proteins play in cellular processes, students need to grasp complex ideas about protein structure, folding, and stability. Our current understanding of these topics is based on mathematical models and experimental data. However, protein structure, folding, and stability are often introduced as descriptive, qualitative phenomena in undergraduate classes. In the process of learning about these topics, students often form incorrect ideas. For example, by learning about protein folding in the context of protein synthesis, students may come to an incorrect conclusion that once synthesized on the ribosome, a protein spends its entire cellular life time in its fully folded native confirmation. This is clearly not true; proteins are dynamic structures that undergo both local fluctuations and global unfolding events. To prevent and address such misconceptions, basic concepts of protein science can be introduced in the context of simple mathematical models and hands-on explorations of publicly available data sets. Ten common misconceptions about proteins are presented, along with suggestions for using equations, models, sequence, structure, and thermodynamic data to help students gain a deeper understanding of basic concepts relating to protein structure, folding, and stability

    Specific orofacial problems experienced by musicians

    Get PDF
    Background: Patients who play musical instruments (especially wind and stringed instruments) and vocalists are prone to particular types of orofacial problems. Some problems are caused by playing and some are the result of dental treatment. This paper proposes to give an insight into these problems and practical guidance to general practice dentists. Method: Information in this paper is gathered from studies published in dental, music and occupational health journals, and from discussions with career musicians and music teachers. Results: Orthodontic problems, soft tissue trauma, focal dystonia, denture retention, herpes labialis, dry mouth and temporomandibular joint (TMJ) disorders were identified as orofacial problems of career musicians. Options available for prevention and palliative treatment as well as instrument selection are suggested to overcome these problems. Conclusions: Career musicians express reluctance to attend dentists who are not sensitive to their specific needs. General practitioner dentists who understand how the instruments impact on the orofacial structures and are aware of potential problems faced by musicians are able to offer preventive advice and supportive treatment to these patients, especially those in the early stages of their career

    Comparative analysis of thermophilic and mesophilic proteins using Protein Energy Networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Thermophilic proteins sustain themselves and function at higher temperatures. Despite their structural and functional similarities with their mesophilic homologues, they show enhanced stability. Various comparative studies at genomic, protein sequence and structure levels, and experimental works highlight the different factors and dominant interacting forces contributing to this increased stability.</p> <p>Methods</p> <p>In this comparative structure based study, we have used interaction energies between amino acids, to generate structure networks called as Protein Energy Networks (PENs). These PENs are used to compute network, sub-graph, and node specific parameters. These parameters are then compared between the thermophile-mesophile homologues.</p> <p>Results</p> <p>The results show an increased number of clusters and low energy cliques in thermophiles as the main contributing factors for their enhanced stability. Further more, we see an increase in the number of hubs in thermophiles. We also observe no community of electrostatic cliques forming in PENs.</p> <p>Conclusion</p> <p>In this study we were able to take an energy based network approach, to identify the factors responsible for enhanced stability of thermophiles, by comparative analysis. We were able to point out that the sub-graph parameters are the prominent contributing factors. The thermophiles have a better-packed hydrophobic core. We have also discussed how thermophiles, although increasing stability through higher connectivity retains conformational flexibility, from a cliques and communities perspective.</p

    Arabidopsis IRE1 catalyses unconventional splicing of bZIP60 mRNA to produce the active transcription factor

    Get PDF
    IRE1 plays an essential role in the endoplasmic reticulum (ER) stress response in yeast and mammals. We found that a double mutant of Arabidopsis IRE1A and IRE1B (ire1a/ire1b) is more sensitive to the ER stress inducer tunicamycin than the wild-type. Transcriptome analysis revealed that genes whose induction was reduced in ire1a/ire1b largely overlapped those in the bzip60 mutant. We observed that the active form of bZIP60 protein detected in the wild-type was missing in ire1a/ire1b. We further demonstrated that bZIP60 mRNA is spliced by ER stress, removing 23 ribonucleotides and therefore causing a frameshift that replaces the C-terminal region of bZIP60 including the transmembrane domain (TMD) with a shorter region without a TMD. This splicing was detected in ire1a and ire1b single mutants, but not in the ire1a/ire1b double mutant. We conclude that IRE1A and IRE1B catalyse unconventional splicing of bZIP60 mRNA to produce the active transcription factor

    ERK1/2 signalling protects against apoptosis following endoplasmic reticulum stress but cannot provide long-term protection against BAX/BAK-independent cell death

    Get PDF
    Disruption of protein folding in the endoplasmic reticulum (ER) causes ER stress. Activation of the unfolded protein response (UPR) acts to restore protein homeostasis or, if ER stress is severe or persistent, drive apoptosis, which is thought to proceed through the cell intrinsic, mitochondrial pathway. Indeed, cells that lack the key executioner proteins BAX and BAK are protected from ER stress-induced apoptosis. Here we show that chronic ER stress causes the progressive inhibition of the extracellular signal-regulated kinase (ERK1/2) signalling pathway. This is causally related to ER stress since reactivation of ERK1/2 can protect cells from ER stress-induced apoptosis whilst ERK1/2 pathway inhibition sensitises cells to ER stress. Furthermore, cancer cell lines harbouring constitutively active BRAFV600E are addicted to ERK1/2 signalling for protection against ER stress-induced cell death. ERK1/2 signalling normally represses the pro-death proteins BIM, BMF and PUMA and it has been proposed that ER stress induces BIM-dependent cell death. We found no evidence that ER stress increased the expression of these proteins; furthermore, BIM was not required for ER stress-induced death. Rather, ER stress caused the PERK-dependent inhibition of cap-dependent mRNA translation and the progressive loss of pro-survival proteins including BCL2, BCLXL and MCL1. Despite these observations, neither ERK1/2 activation nor loss of BAX/BAK could confer long-term clonogenic survival to cells exposed to ER stress. Thus, ER stress induces cell death by at least two biochemically and genetically distinct pathways: a classical BAX/BAK-dependent apoptotic response that can be inhibited by ERK1/2 signalling and an alternative ERK1/2- and BAX/BAK-independent cell death pathway

    The Role of IRE1α in the Degradation of Insulin mRNA in Pancreatic β-Cells

    Get PDF
    The endoplasmic reticulum (ER) is a cellular compartment for the biosynthesis and folding of newly synthesized secretory proteins such as insulin. Perturbations to ER homeostasis cause ER stress and subsequently activate cell signaling pathways, collectively known as the Unfolded Protein Response (UPR). IRE1α is a central component of the UPR. In pancreatic β-cells, IRE1α also functions in the regulation of insulin biosynthesis.Here we report that hyperactivation of IRE1α caused by chronic high glucose treatment or IRE1α overexpression leads to insulin mRNA degradation in pancreatic β-cells. Inhibition of IRE1α signaling using its dominant negative form prevents insulin mRNA degradation. Islets from mice heterozygous for IRE1α retain expression of more insulin mRNA after chronic high glucose treatment than do their wild-type littermates.These results reveal a role of IRE1α in insulin mRNA expression under ER stress conditions caused by chronic high glucose. The rapid degradation of insulin mRNA could provide immediate relief for the ER and free up the translocation machinery. Thus, this mechanism would preserve ER homeostasis and help ensure that the insulin already inside the ER can be properly folded and secreted. This adaptation may be crucial for the maintenance of β-cell homeostasis and may explain why the β-cells of type 2 diabetic patients with chronic hyperglycemia stop producing insulin in the absence of apoptosis. This mechanism may also be involved in suppression of the autoimmune type 1 diabetes by reducing the amount of misfolded insulin, which could be a source of “neo-autoantigens.
    corecore