1,445 research outputs found

    Probabilistic classification of acute myocardial infarction from multiple cardiac markers

    Get PDF
    Logistic regression and Gaussian mixture model (GMM) classifiers have been trained to estimate the probability of acute myocardial infarction (AMI) in patients based upon the concentrations of a panel of cardiac markers. The panel consists of two new markers, fatty acid binding protein (FABP) and glycogen phosphorylase BB (GPBB), in addition to the traditional cardiac troponin I (cTnI), creatine kinase MB (CKMB) and myoglobin. The effect of using principal component analysis (PCA) and Fisher discriminant analysis (FDA) to preprocess the marker concentrations was also investigated. The need for classifiers to give an accurate estimate of the probability of AMI is argued and three categories of performance measure are described, namely discriminatory ability, sharpness, and reliability. Numerical performance measures for each category are given and applied. The optimum classifier, based solely upon the samples take on admission, was the logistic regression classifier using FDA preprocessing. This gave an accuracy of 0.85 (95% confidence interval: 0.78–0.91) and a normalised Brier score of 0.89. When samples at both admission and a further time, 1–6 h later, were included, the performance increased significantly, showing that logistic regression classifiers can indeed use the information from the five cardiac markers to accurately and reliably estimate the probability AMI

    Telescopic actions

    Get PDF
    A group action H on X is called "telescopic" if for any finitely presented group G, there exists a subgroup H' in H such that G is isomorphic to the fundamental group of X/H'. We construct examples of telescopic actions on some CAT[-1] spaces, in particular on 3 and 4-dimensional hyperbolic spaces. As applications we give new proofs of the following statements: (1) Aitchison's theorem: Every finitely presented group G can appear as the fundamental group of M/J, where M is a compact 3-manifold and J is an involution which has only isolated fixed points; (2) Taubes' theorem: Every finitely presented group G can appear as the fundamental group of a compact complex 3-manifold.Comment: +higher dimension

    Spherical structures on torus knots and links

    Full text link
    The present paper considers two infinite families of cone-manifolds endowed with spherical metric. The singular strata is either the torus knot t(2n+1,2){\rm t}(2n+1, 2) or the torus link t(2n,2){\rm t}(2n, 2). Domains of existence for a spherical metric are found in terms of cone angles and volume formul{\ae} are presented.Comment: 17 pages, 5 figures; typo

    Assessment of intragranular and extragranular fracture in the development of tablet tensile strength

    Get PDF
    When a tablet is compacted from deformable granules and then broken, the fracture plane may cleave granules in 2 (intragranular fracture) or separate neighboring granules (extragranular fracture). In this study, a novel method was developed to quantify the extent of intragranular versus extragranular fracture by compacting tablets from multicolored ideal granules and evaluating fracture surfaces. The proportions of intragranular and extragranular fracture were quantified and modeled in light of a new metric; the deformation potential, Δ, reflecting the solid fraction increase as an initial granule bed is compressed into a final tablet. Results show that a measurable tablet strength is achieved at Δ > 0.18, but intragranular fracture is not observed until Δ > 0.21. At very large Δ, tablets experience almost exclusively intragranular fracture, yet the tablet tensile strength is considerably lower than that of a tablet compacted from raw powders versus precompacted granules. Thus, secondary compaction of granules appears to weaken the granule matrix, leading to reduced tablet tensile strength even in the presence of strong extragranular bonding

    A comparison between the homocyclic aromatic metabolic pathways from plant-derived compounds by bacteria and fungi

    Get PDF
    Aromatic compounds derived from lignin are of great interest for renewable biotechnical applications. They can serve in many industries e.g. as biochemical building blocks for bioplastics or biofuels, or as antioxidants, flavor agents or food preservatives. In nature, lignin is degraded by microorganisms, which results in the release of homocyclic aromatic compounds. Homocyclic aromatic compounds can also be linked to polysaccharides, tannins and even found freely in plant biomass. As these compounds are often toxic to microbes already at low concentrations, they need to be degraded or converted to less toxic forms. Prior to ring cleavage, the plant- and lignin-derived aromatic compounds are converted to seven central ring-fission intermediates, i.e. catechol, protocatechuic acid, hydroxyquinol, hydroquinone, gentisic acid, gallic acid and pyrogallol through complex aromatic metabolic pathways and used as energy source in the tricarboxylic acid cycle. Over the decades, bacterial aromatic metabolism has been described in great detail. However, the studies on fungal aromatic pathways are scattered over different pathways and species, complicating a comprehensive view of fungal aromatic metabolism. In this review, we depicted the similarities and differences of the reported aromatic metabolic pathways in fungi and bacteria. Although both microorganisms share the main conversion routes, many alternative pathways are observed in fungi. Understanding the microbial aromatic metabolic pathways could lead to metabolic engineering for strain improvement and promote valorization of lignin and related aromatic compounds.Peer reviewe
    • …
    corecore