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Abstract Logistic regression and Gaussian mixture model (GMM) classifiers

have been trained to estimate the probability of acute myocardial infarction

(AMI) in patients based upon the concentrations of a panel of cardiac

markers. The panel consists of two new markers, fatty acid binding protein

(FABP) and glycogen phosphorylase BB (GPBB), in addition to the traditional

cardiac troponin I (cTnI), creatine kinase MB (CKMB) and myoglobin. The

effect of using principal component analysis (PCA) and Fisher discriminant

analysis (FDA) to preprocess the marker concentrations was also investigated.

The need for classifiers to give an accurate estimate of the probability

of AMI is argued and three categories of performance measure are described,

namely discriminatory ability, sharpness, and reliability. Numerical performance

measures for each category are given and applied.
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The optimum classifier, based solely upon the samples take on admission,

was the logistic regression classifier using FDA preprocessing. This gave an

accuracy of 0.85 (95% confidence interval: 0.78–0.91) and a normalized Brier

score of 0.89. When samples at both admission and a further time, 1–6h

later, were included, the performance increased significantly, showing that

logistic regression classifiers can indeed use the information from the five

cardiac markers to accurately and reliably estimate the probability AMI.

Key words acute myocardial infarction – AMI – cardiac markers – diagnostic

aid – probabilistic classification
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1 Introduction

Coronary heart disease is a narrowing of the coronary arteries which can

cause a heart attack (acute myocardial infarction or AMI). This is the

leading cause of premature death in the developed world, causing one quarter

of all male deaths and one sixth of all female deaths in the UK [1].

An acute myocardial infarction is caused by a coronary artery becoming

completely obstructed, normally due to a blood clot, and blood supply being

lost to an area of the cardiac tissue. Once the cells in the heart loose their

blood supply (cardiac ischemia), their membranes become more permeable

and certain chemicals, previously retained within the cell, are able to pass

through the cell membrane and enter the blood stream. A number of these

chemicals, known as cardiac markers, have been found to be useful in

diagnosing AMI, especially where electrocardiograph (ECG) readings are

inconclusive [2]. Most hospitals will check blood samples from patients with

a suspected AMI for one or two of these markers, usually creatine kinase

MB isoenzyme (CKMB) or cardiac troponin I (cTnI).

If AMI is detected quickly, treatment can be administered either via

drugs or surgery to minimise the effects of the infarct and keep the heart

functioning effectively. The treatments, however, are both financially costly

and may have side effects rendering them risky for patients who have not

had an AMI. It is therefore important to rapidly and accurately assess the

condition of a patient for the correct treatment to be administered.

Certain cardiac markers, most notably cTnI, are very specific to cardiac

tissue damage, but may take as long as 6–12h to reach diagnostic values.

Others, for example myoglobin, can be found in the blood stream at abnormal

levels within 2h of an infarct occurring, but are much less sensitive to AMI:

that is, elevated levels can be caused by many factors other than AMI [2].

Clinical diagnosis is based upon a combination of ECG data, clinical

signs and symptoms, and cardiac marker concentrations. Various artificial

intelligence pattern recognition techniques have been used assimilate some

of this data to assist clinical decision making. Most have focused on using

data from clinical symptoms or ECGs. Perhaps the most influential research



4 Wilson, et al.

in this area was by Goldman et al. [3, 4] who presented a decision tree

classifier based on studies of over six thousand patients. The Goldman

Protocol, as the classifier became known, used information from patient

histories, clinical symptoms and ECG measurements, but only returned

binary decisions.

Other techniques have mainly used either logistic regression [5, 6, 7, 8]

or artificial neural networks [9, 10]. The logistic regression based ACI-

TIPI algorithm [5], which attempts to diagnose AMI from computerised

interpretation of ECG signals combined with the patient’s age, gender and

information on chest pain, forms the basis of a commercial software application

by Philips Medical Systems (Andover, Massachusetts, USA) to assist in the

diagnosis of AMI. Most recently, Ellenius et al. have developed a protocol,

based primarily upon neural network analysis of sequential measurements of

combinations of CMKB, myoglobin and cTnI at 30 minute intervals, which

shows promising results [11, 12].

In this work, patient samples were analysed on an Evidence biochip

analyser (Randox Laboratories Ltd.). This analyser automatically measures

the concentrations of five key cardiac markers: the previously mentioned

CKMB, myoglobin and cTnI; and the more recently discovered glycogen

phosphorylase isoenzyme BB (GPBB) and fatty acid binding protein (FABP).

In contrast to other publications in this field, which typically use only one

or two markers, this work has access to the concentrations of five markers

simultaneously, two of which (GPBB and FABP) have not been used in

any previous computer based classification system. These concentrations

are used to construct classifiers which predict the probability a patient has

AMI (rather than a binary ‘AMI’ or ‘non-AMI’ classification).

By giving an accurate probability of AMI, such a classifier can be used

by clinicians as a decision aid, rather than as a replacement for human

decision making. However traditional classifier performance measures, such

as accuracy, are only viable when classifiers produce a binary decision.

Assessing the performance of a probabilistic classifier is a more troublesome

task, and is seldom discussed in the literature. Techniques to accomplish

this are reviewed.
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Two different classifier structures are used, logistic regression and Gaussian

mixture models, together with several preprocessing techniques, in order to

determine the optimal classifier design. Samples were available from patients

upon their admission to hospital and, in many cases, at a second time 1–

6h later. Incorporating a second sample (from the same patient) into the

classifier is shown to improve diagnostic performance, but at the price of

delaying the time before the diagnosis is available.

The long-term aims of this research are to enhance the information

available to clinical staff concerning AMI patients to assist with diagnosis

and treatment. Initially, the concentrations of five markers, instead of the

current one or two, will be provided; this paper is concerned with the next

step: processing these raw marker readings to estimate the probability of

AMI in new patients.

This paper is organised as follows: section 2 explains the study population,

recruitment, sampling and inclusion criteria. Section 3 then discusses the

need for probabilistic classifiers (i.e. classifiers which give a probability of

AMI rather than simply ‘yes’ or ‘no’) and highlights appropriate measures

for assessing the performance of such classifiers. In section 4 two classifiers

are presented: logistic regression and Gaussian mixture models (GMMs),

together with the various preprocessing techniques used. The results when

these classifiers were evaluated on the dataset are given and discussed

in section 5, the conclusions are drawn in section 6 and section 7 gives

suggestions for future work.

2 Study details

Samples for this study were collected from patients entering the Department

of Emergency Medicine, St. James’ Hospital, Dublin, Ireland, between 18

September 2000 and 12 October 2002 as part of a large ongoing study.

A research nurse invited patients entering the department with symptoms

indicative of AMI (typically chest pain) to enrol in the study. Those who

gave their informed consent had a selection of clinical, demographic and

ECG information recorded in a database and an initial blood sample taken.
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A protocol was established which required subsequent blood samples to be

taken every two hours, up to a maximum of ten samples. Due to the nature

of a busy emergency department and the acute nature of the patients’

illnesses, it was not always possible to follow the timing or number of

samples exactly, and a number of patients, especially those with AMI,

withdrew their consent part way through the sampling regime. None of

the patients, however, requested complete withdrawal from the study, so

samples already taken were retained. The sample taken on admission was

labelled T0, and subsequent samples T1, . . . , T9. They were then frozen on

site and transported to Randox Laboratories Ltd. where they were processed

using the Evidence biochip analyser. Follow-up from patient records and

home telephone calls sought to establish the final diagnosis given to each

patient, together with surgical and drug treatments as well as 7 and 30 day

mortality.

Approximately 8% of the patients in the study had an AMI. Preliminary

investigations showed that this small number of patients was insufficient

to reliably construct a classifier. In order to enhance the proportion of

AMI patients, priority was then given to analysing samples from AMI

patients over those from non-AMI ones. Although this meant the prevalence

of each disease in the data set was no longer representative of that in

the study population, it has proved possible to develop and test various

classifier models. Bayes’ theorem can be used at a later time to adjust the

probabilities given by a classifier to correct for the difference in prevalence

of the training population and that in the population on which the classifier

will be used [13].

One of the study aims is to make an early diagnosis of AMI. With this

in mind, patients with a T0 sample taken more than 18h after the onset of

pain were discarded. A second data set was constructed containing both T0

and T1 samples. Patients for this set were further rejected if the T1 sample

was taken more than 6h after T0. This regime gives rise to potentially large

variations in the time between an AMI event occurring and their T0 sample

being taken, and also gives the range between first and second samples

being taken (T1−T0) of 1–6h. These variations are reflective of the clinical
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situation in busy emergency departments, and classifiers constructed from

such data will incorporate an inherent robustness to practical variations in

sampling times.

Finally two studies were omitted from the research because their diagnosis

was uncertain. The first was recorded as having had an AMI, but a later

clinical review concluded the event may have happened whilst in hospital,

probably about 48h after the initial pain onset, and almost certainly after

the T0 and T1 samples were taken. The diagnosis is therefore unreliable

and this patient has been omitted from the study. For the second, clinical

opinion was divided between unstable angina and non-Q wave MI for the

final diagnosis.

This left one set of 159 patients with both a valid diagnosis and T0

measurements, 50 of whom had AMI (31%). The second set, containing

both T0 and T1 measurements had 132 patients, 38 of whom had AMI

(29%).

3 Measures of performance

Many automatic classification systems produce some score, or measure of

certainty in their output, rather than simply a binary ‘yes’ or ‘no’ decision.

This score frequently lies between 0 and 1, and is often referred to as a

probability. Despite this, the score is often hidden from the user. A threshold

is set, above which a value of 1 (or ‘yes’) is returned, and below which a

value of 0 (or ‘no’) is given.

In the field of medical diagnostics, returning the actual probability of a

disease has the potential to be more clinically useful than simply providing

a dichotomous decision. Clinicians are used to dealing with uncertainties

and performing risk assessment, and a probability can provide evidence to

be incorporated the clinician’s patient management strategy. Providing a

dichotomous decision can be perceived as trying to compete with the clinical

judgement and removing decision making from the doctor—de Dombal

labelled such a perception “the kiss of death” to many computer-aided

diagnostic systems [14].
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However, assessing the performance of a probabilistic classifier is more

challenging; when classifiers give a binary output, the only possible measures

of performance depend upon how many patients are diagnosed correctly. If

this is measured over an entire sample population, it is called accuracy,

or non-error rate (NER). If it is only measured over diseased patients, it

is termed sensitivity, or if only measured over healthy ones, specificity. In

many cases, a test or classifier gives a continuous output which is then

thresholded to give a binary decision. Receiver operator characteristic curves

(ROC curves) [15] are a tool to visualise the relationship between sensitivity

and specificity as this threshold is varied, and the area under the ROC curve

(AUROCC) provides a numerical measure of the classifiers’ performance,

which has the advantage of being independent of the threshold.

In the probabilistic realm, however, all of these measures (except AUROCC)

break down. If a probabilistic classifier claims that a healthy sample has an

80% chance of being diseased, it is not possible to say the classifier is ‘wrong’

based on this single sample. Habbema, Hilden and Bjerregaard proposed

three distinct, yet related, quantities for measuring the performance of

probabilistic classifiers: discriminatory ability, sharpness and reliability ([16,

17, 18, 19, 20]), each of which must be considered when assessing the

performance of a probabilistic classifier.

3.1 Discriminatory ability

Discriminatory ability is a measure of how well a classifier can select between

diagnoses. A good classifier should clearly assign high probabilities to the

diseases the patients actual have.

In addition to the well known AUROCC, the normalised Brier score

(Q31 in Habbema et al.’s notation [16]) was used to measure discriminatory

ability in this work. In the case of two mutually exclusive classes (e.g. AMI

and non-AMI), this score is defined as:

Q31 = 1 −
1

N

N∑

i=1

(1 − Pi,actual)
2
, (1)
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where N is the number of patients and Pi,actual is the probability assigned

to the ith patient’s actual disease. For example, if patient i is given a 35%

chance of AMI then Pi,AMI = 0.35 and Pi,non-AMI, the probability of non-

AMI is therefore 0.65. If clinical diagnosis indicates AMI, then Pi,actual =

Pi,AMI = 0.35, whereas if the clinical diagnosis is non-AMI, then Pi,actual =

Pi,non-AMI = 0.65.

For any given patient, the best possible classification occurs when Pi,actual =

1, thus the Brier score is based upon the mean square deviation from

this ideal. This mean-square deviation, however, decreases as the classifier

performance improves, contrary to conventional performance measures such

as accuracy. The normalised Brier score, therefore, subtracts this deviation

from unity to give a score of 1 to a perfect classifier (i.e. one which always

gives a probability of 1 to the patient’s actual disease), and a score of 0 to

a totally imperfect classifier. The normalised Brier score can be generalised

to deal with more than two classifications [17].

3.2 Sharpness

The second performance measure, sharpness, is a measure of the confidence

which a classifier has in its outputs, rewarding confident predictions (i.e.

close to unity or zero), rather than indecisive ones. Sharpness is defined as

the expected value of the discriminatory ability:

E [Q31] = 1 −
1

N

N∑

i=1

∑

j∈{AMI,

non-AMI}

Pi,j (1 − Pi,j)
2
. (2)

Note that as this measure is an expected value, it does not depend

upon the actual disease classification. Here a classifier which assigns a

probability of 1 randomly to diseases would be perfectly sharp, although

the probabilities would be meaningless in practice. This problem leads to

the need for the third performance measure.
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3.3 Reliability

Reliability ties together the ideas of discriminatory ability and sharpness. If

100 patients are each assigned an AMI probability of 0.8, about 80 would be

expected to actually have that disease. If only 50 in fact had the disease, the

classifier is over confident and should have assigned a lower probability to

each patient. On the other hand, if 99 of the patients did have the disease,

then the classifier is diffident, or too cautious. In either case, the classifier

has a poor reliability.

Reliability, therefore, is the difference between how well the classifier

claims it can perform (sharpness) and how well it actually performs (discriminatory

ability). The reliability, Q3, is given by:

Q3 = Q31 − E [Q31] . (3)

Hilden et al.[16] have shown that negative reliability indicates an overconfident

classifier, whilst reliabilities greater than zero reveal a classifier to be diffident.

Reliability on its own is insufficient as a measure of performance: consider

a classifier which simply assigns every patient the same probability of disease,

and that probability is the prevalence of the disease in the population under

investigation. For example, if it is known that 10% of a population have a

certain disease, then assign every patient a probability of 0.1, regardless of

all other evidence. Such a classifier would have perfect reliability, yet would

not provide any additional clinical information.

For this reason, reliability is used and reported in conjunction with

discriminatory ability in this work. (The relationship expressed in equation 3

shows that including sharpness does not provide any additional information.)

3.4 Dot Diagrams

In addition to the numeric measures above, a useful graphical visualisation

technique was presented by Hilden et al. [16] in the form of the dot diagram.

This shows the variation in the AMI and non-AMI probabilities from the

classifier in the form of two rows of points. It therefore provides a rapid
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method for visualising the spread of the probabilistic outputs for a given

disease, see figure 3 for example. Ideally, the points should be bunched to

the right hand side of the diagram (meaning that high probabilities were

assigned to the correct diseases).

3.5 Optimal use of data: Leave-one-out cross-validation

Assessing the performance of a classifier typically involves presenting the

classifier with a number of samples and asking it to classify them. Its

classifications are then compared with a gold standard (clinical diagnosis in

this case) and the performance measures calculated. Ideally the data used

to construct the classifier should be different from that used for assessment

as it will almost certainly perform better on samples already seen.

The problem then arises as to how to divide the finite amount of study

data available between the training set and the test set. One elegant solution

is leave-one-out cross-validation [13]. This entails training a classifier on

N −1 of the available N studies, then testing the classifier on the remaining

one. This process is repeated N times, using a different study for testing

on each occasion, resulting in the construction of N unique, yet similar,

classifiers. Using the results from these N tests, the performance measures

described earlier can then be calculated to provide an unbiased estimate of

the performance of a classifier trained using all N input samples.

4 Classifiers

From the many techniques available for automatic pattern classification,

two were selected for testing in this application. The first, logistic regression

(LR), is one of the simplest techniques used in multivariate pattern recognition

and aims to estimate the class conditional probability distribution. It is well

understood and much less prone to over-fitting when trained on small data

sets than most of the alternatives available. LR classifiers can be viewed

as drawing a series of parallel, n − 1 dimensional, probability contours (i.e.

hyper-planes) through n dimensional space. This is illustrated in figure 1

for the two dimensional case.
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The second method employs a different strategy: rather than trying to

create a boundary in the data space, with points near the boundary assigned

probabilities around 0.5 and those further away given probabilities closer to

0 or 1, Gaussian mixture models (GMMs) estimate the probability density

functions (pdfs) for both the AMI and non-AMI datasets and combine the

results using Bayes’ theorem. These pdfs contain information about the

probability density anywhere in the input space, based on the concentration

of training points in that locality. This means that the GMM can model

arbitrarily complex functions (pdfs), but at the cost of being highly parameterised

and much more likely to overfit the data.

4.1 Data preparation

From the measurements on the 291 unique blood samples used in this work,

some marker concentrations in some samples were found to be too high to be

accurately measured. Eleven CKMB, 30 FABP, 15 myoglobin and 5 cTnI

measurements fell into this category. To facilitate classifier construction,

these out-of-range readings were replaced with values drawn randomly from

a uniform distribution ranging from the maximum value accurately recorded

to 1.1 times this maximum value.

Given the nature of the data and disease, this is not as significant an

issue as it may first appear: the markers are released primarily as a result

of damage to the myocardium (heart muscle); very high levels of markers

therefore are almost certainly indicative of AMI. In fact, only two non-

AMI patients had any marker readings above this threshold: 213 and 267.

Patient 213 had a myoglobin reading out of range, and suffered from a

cardiomyopathy, which would cause damage to the cardiac tissue. Patient

267 suffered from unstable angina, a condition which also causes damage to

the myocardium.

The marker values were then normalised to give each zero-mean and

unit variance, with markers from T0 treated separately to those from T1

during normalisation.
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4.2 Pre-processing and logistic regression

There are numerous techniques for pre-processing data in order to either

remove noise or reduce the dimensionality of datasets (or both). Two procedures

were employed on the normalised marker data: firstly principal component

analysis (PCA), and secondly Fisher discriminant analysis (FDA) [13].

Principal component analysis is commonly used for dimensionality reduction

and involves selecting principal components (PCs) which are linear combinations

of the input variables. The first principal component, PC1, is selected so as

to describe the maximum variation in the data. The second is selected to

contain the maximum variation in the data, subject to the constraint that

it is perpendicular to PC1, and so on. Often the majority of the variation

in the data is captured by the first few PCs.

Fisher discriminant analysis (also known as canonical analysis) can be

viewed as a linear transformation akin to PCA, except that rather than

trying to maximise the variation captured by PC1, it uses class labels to

maximise the separation between classes (AMI and non-AMI in this case).

A detailed description is given in [21].

Logistic regression classifiers were designed and tested using all possible

combinations of the normalised markers, different numbers of PCs and

finally FDA.

4.3 Gaussian mixture models

Bayes’ theorem provides a method for determining the probability, P (AMI|X),

that a patient with a vector of five marker concentrations, X, has AMI, given

only information about the probability density function (pdf) of marker

concentrations in the population of AMI patients P (X|AMI), the pdf of a

similar non-AMI population P (X|non-AMI) and the prevalence of AMI in

the total population under study, P (AMI). Mathematically:

P (AMI|X) =
P (X|AMI)

P (X|AMI) + P (X|non-AMI) · (1 − P (AMI)/P (AMI))
. (4)
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The prevalence of the disease can easily be calculated by counting the

number of AMI patients in the sample. Modelling the pdfs of the AMI

and non-AMI populations is somewhat more difficult; in this case Gaussian

mixture models (GMMs) [13] were used.

A GMM of a pdf is created using a combination of Gaussian kernels,

similar to a radial basis function neural network. A GMM was created for

each of the two classifications. One is an estimate of the probability density

function (pdf) for non-AMI patients, the other an estimate of the pdf for

AMI patients. In addition to the number and combination of inputs needed,

the number of centres, or Gaussians, used to construct the model had to

be decided. Once these meta-parameters were selected, the centres and

variances of each Gaussian were determined by the expected maximisation

training algorithm [22].

A sample GMM pdf with three centres is shown in figure 2. When

a new patient is seen with a vector of markers concentrations, X, the

probabilities P (X|AMI) and P (X|non-AMI) can be determined from the

GMMs, and therefore P (AMI|X) follows from equation 4, P (AMI) having

been previously calculated.

5 Results and discussion

Results from a number of different classifiers are described in this section,

together with a discussion of the merits and drawbacks of each, mainly

concerning the sources of bias in the performance estimates. These results

are summarised in tables 1 and 2. All computation was carried out using

Matlab 6 [23] and, where appropriate, the Netlab toolbox [22].

5.1 Logistic regression at admission

Although concentrations of five markers were available at admission (T0),

reducing the dimensionality of a classifier can usually improve its performance

on unseen data, as it is less likely to over-fit the training set. Initially, this

dimensionality reduction was accomplished by omitting markers from the
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data set. For five markers, there are 25 −1 = 31 unique combinations, if the

trivial case of no inputs to the classifier is omitted.

From these 31 possible logistic regression classifiers trained using combinations

of markers taken on admission, the optimum performance (largest Brier

score and NER) occurred with the classifier trained using two of the five

available markers: CKMB and GPBB. In this case, the classifier had a NER

of 0.868 (95% confidence interval: 0.805–0.916), Brier score of 0.904 (with

an associated reliability of -0.013) and AUROCC of 0.913 (standard error:

0.029). The classifiers were ranked according to Brier score to investigate

the relationship between the markers used in construction of each classifier

and its performance. The first notable pattern was that the 16 classifiers

which included CKMB ranked higher than the 15 which did not. Also,

FABP proved least useful, occurring only twice in the top ten, while GPBB,

myoglobin and cTnI appeared 5, 4 and 4 times respectively.

Figure 3 shows the dot diagram for the optimum classifier, where the

good performance obtained in the majority of patients can easily be seen.

Three non-AMI patients, 320, 379 and 239 with P(AMI) below 0.4 were

badly diagnosed. Patient 320 suffered from unstable angina followed by

pulmonary oedema, and proceeded to suffer an MI one week later. Patient

379 was diagnosed with stable angina, cardiac arrthymia and heart failure.

Patient 239 was assigned about a 70% chance of AMI, despite having a

‘non-cardiac’ final diagnosis. The reason for this anomolous classification is

unclear since, although the patient had an MI 3 years previously, this is

unlikely to have affected the results.

A larger number of AMI cases were misclassified, with some 15 out of 50

given less than a 50% chance of AMI. This is primarily due to the first blood

sample having been taken very soon after the AMI, before the markers had

risen to diagnostic concentrations.

5.2 Logistic regression using two samples

This section reports the performance of classifiers constructed using the

concentrations of markers on admission (T0) and at a second time (T1), 1–



16 Wilson, et al.

6 hours later. The marker concentrations from T0 and T1 were presented as

separate inputs to the logistic regression classifiers with any combination of

up to 10 inputs. This resulted in 210−1 = 1023 candidate classifiers. From all

these, the best performance (as measured by the Brier score) was produced

when using FABP and myoglobin concentrations at T0 and CKMB, FABP

and cardiac troponin I at T1. This classifier resulted in a NER of 0.955

(CI: 0.904–0.983), Brier score of 0.960, reliability of -0.018 and AUROCC

of 0.959 (SE: 0.023).

The dot diagram for this classifier (figure 4) shows virtually all patients

well classified (i.e. a high probability was assigned by the classifier to the

patient’s actually diagnosis). Only three AMI patients were badly diagnosed

(P (AMI) < 0.4), and similarly, only two non-AMI patients were badly

classified.

The AMI patients in question were 380, 439 and 963. From these, the

first had a T0 reading taken 5h 14min post pain onset, and a T1 sample

taken 6h 29min post pain onset. Both these samples were taken at an early

stage and in very close succession. These two factors may work together

to make it difficult for the classifier to reliably diagnoise AMI. Patient 439

again had markers recorded at a very early stage, T0 at 4h 30mins after

pain onset and T1 at 6h 30. This patient’s markers were also unlikely to

have risen enough in this short space of time to be reliably detected by the

classifier. Finally, patient 963 again had T0 taken very early (4h 09mins

post pain onset) and had a relatively minor (non Q waves, no ST elevation)

infarction.

The non-AMI patients misclassified were patients 267 and 239. Patient

267 had had 4 previous MIs and was diagnosed with unstable angina, a

condition which causes some damage to cardiac tissue. This patient had

elevated levels of all markers, especially myoglobin and cardiac troponin I,

and also showed the rise and fall profile characteristic of AMI patients [24].

Patient 239 has been discussed previously (section 5.1).

Although these results initially appear excellent, they must be tempered

by the knowledge that picking the best classifier from a selection of over

one thousand, based on its performance over test points from leave-one-
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out cross validation, then using the same test set of patients to measure

the performance will lead to bias in the performance measure. Ideally, the

available data should be split, one part being used to train and test the

models and the results used to select the best classifier. This classifier should

then be tested on the remaining part of the data set to provide an unbiased

measure of performance. If this final step is omitted bias is inevitably

introduced in the performance measures. The more models available to

choose from (1023 in this case), the larger the effect of this bias.

5.3 Principal component analysis

The optimum classifiers in each of the previous two sections were produced

from a subset of the five available markers, rather than from the complete

set. This was deliberately done because of the well-documented effect of

overfitting with high-dimensional data (e.g. [13]). Omitting markers is the

simplest way to reduce the dimensionality of the input space but it is

unlikely to provide the best approach since potentially important information

is discarded. Principal component analysis (PCA) often proves a better

technique for reducing the dimensionality of a classifier. It was applied to the

marker concentrations for each patient and the logistic regression analysis

was then repeated, firstly using the T0 sample, then using both the T0 and

T1 samples.

Table 3 and figure 5 show the results of this analysis, where the optimum

performance (highest Brier score and NER plus a reasonable reliability)

resulted from using two PCs. The Brier scores for the best marker combinations

were very similar (table 1), with PCA being just slightly poorer. PCA,

however, may have a slight edge in terms of producing less bias in the

performance measures of the optimum classifier. Here the best classifier

from 5 possibilities is being selected, rather than the best one from 31 when

markers are not pre-processed.

The four non-AMI patients badly classified in figure 5 are from patients 320,

322, 267 and 308. From these, patients 320 and 267 have already been

discussed (section 5.2), patient 308 had elevated marker levels and was
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diagnosed with unstable angina, which results in damage to cardiac tissue.

Patient 322 had elevated marker levels, especially at T0, and was diagnosed

with digoxin toxicity and has a history of angina, which may have caused

minor cardiac damage.

When markers from both T0 and T1 were used (table 4, figure 6), the

results were less clear. Generally speaking, the reliability decreased as more

principal components were included. This is because the number of model

parameters to be determined in training increased with the number of inputs

and the model was then likely to over-fit the data. The poorer figures for

reliability signify that the classifier is more likely to push probabilities to the

extreme values of 0 or 1 regardless of whether that is the correct diagnosis

or not. That is, the classifier’s sharpness increases without a corresponding

increase in its discriminatory ability.

Taking this into account, the optimum classifier can be found by considering

the trade-off between discriminatory ability and reliability, which probably

leaves the best classifier as being the one which uses either 3 or 5 PCs.

The performances of the best classifiers using PCA with inputs from two

consecutive blood samples, however, are poorer than the best classifier found

by crudely omitting markers (table 2). There are two possible contributing

factors: firstly the assumption that directions (principal components) which

capture the maximum variation of the data are the best directions in which

to project the data to provide the optimum separation of two sets of labelled

data may not be valid. Fisher discriminant analysis (section 5.4) attempts

to circumvent this shortcoming but it is not without its own difficulties.

The second factor is the bias in the performance measurement. Selecting

the best classifier, from the set of 10 constructed using PCA preprocessing,

produces a smaller bias than selecting the best from a set of 1023. This is

the most likely cause of the small difference between the results obtained

using, for example the first 4 PCs, and that obtained using the optimum

combination of markers listed above.
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5.4 Fisher discriminant analysis

The second preprocessing method investigated was Fisher discriminant analysis

(FDA), also known as canonical analysis [21]. A summary of the results is

presented in table 7.

Here the performance of both FDA classifiers was slightly worse than

that obtained using either the optimum combination of markers (sections 5.1

and 5.2), or the optimum number of principal components (section 5.3).

There are three possible reasons for the difference in performance measures.

Firstly, the differences are quite small, and certainly well within the confidence

intervals for the performance measures, so that they may be due to random

effects and would disappear if a larger sample was available.

Secondly, they may be caused by bias in the selection of the other

classifiers, as discussed in section 5.3, where an independent test set is

required to assess the performance of the optimum classifier in each case.

As FDA produces only a single variable, no further selection is required,

hence its performance measure is unbiased.

Finally, FDA rests on the assumption that the intra-class characteristics

of each data set (AMI and non-AMI) is comparable [25]. This is not the case

with the current dataset, as non-AMI patients tend to have almost uniformly

low concentrations across all markers, whereas AMI patients have a much

larger variation in their marker concentrations.

5.5 Gaussian mixture models

The final classification approach used was Gaussian mixture models (GMM).

GMM techniques have many more hyper-parameters to be selected than the

previous methods discussed, leaving them much more prone to bias in the

selection of the optimum classifier.

When considering T0 samples, GMMs were constructed with between

1 and 5 centres, using spherical covariance matrices only. Using all 31

combinations of markers, and the 25 combinations of AMI/non-AMI centres

led to 775 unique classifiers. From these, the best classifier (judged according

to Brier score), used only CKMB and GPBB and had four centres in both
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its AMI and non-AMI models. It had a NER of 0.843 (95% CI: 0.777–0.896),

Brier score of 0.898, reliability -0.030 and AUROCC of 0.918 (SE: 0.028).

Its dot diagram is shown in figure 9.

These results have a lower NER and Brier score, and poorer reliability

than the results from either the simple logistic regression, or the logistic

regression with PCA pre-processing. They perform slightly better against

the FDA classifier, having a marginally better Brier score, yet a poorer

reliability and slightly worse NER.

The experiment was repeated using PCA preprocessing and increasing

the number of PCs entered into the classifier whilst varying the number

of centres. The results are listed in table 8, with the dot diagram for the

case of 5 principal components shown in figure 10. Again, these results have

slightly worse diagnostic performance measures and poorer reliability scores

than the logistic regression classifiers.

Given the results are not as good as other, simpler, methods and that the

bias in the results has the potential to also be much larger, it was decided

not to pursue the GMM analysis with two sets of marker measurements.

There is another reason for not investigating GMMs further: the nature

of the Gaussian kernels from which the model is built. Cardiac markers

operate in a moderately predictable manner: as the amount of myocardial

damage increases, the amount of marker released and hence its concentration

in the blood increase. This prior knowledge indicates that if the concentration

of any marker increases, the probability of AMI returned by the classifier

should increase too. The shape and nature of a Gaussian kernel mean

that data points far from its centre are assigned a probability density of

virtually zero. Thus GMMs only cover part of the input space, and are

capable of dividing it up in a smooth, though somewhat arbitrary fashion

if required, rendering them well-suited to multiple classification problems.

Logistic regression, however, divides the entire input space in a manner

consistient with this prior knowledge, see figure 1.
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6 Conclusions

Good performance in estimating the probability of AMI from cardiac marker

concentrations from patients admitted to hospital with chest pain has been

demonstrated. The benefit of measuring the concentrations of several markers

has also been shown, as classifiers with inputs from multiple markers performed

better than those with data from only a single marker.

Including marker concentrations from two sequential times also leads to

a marked improvement in the discriminatory ability of classifiers. This is

probably due to two reasons: firstly, as there is a time lag between an AMI

event and markers entering the bloodstream, the second measurement will

almost certainly have higher marker concentrations than the first, which

may be enough to improve the performance. The second reason is that

knowing how marker concentrations change with time can provide more

information than either marker measurement individually [26, 6].

The new FABP marker has shown itself as a useful addition for diagnosing

AMI based on two marker readings. From the 1023 possible marker combinations

using samples from both T0 and T1, the top 147 (ordered by Brier Score)

included at least one FABP measurement in their combination. From those

combinations that did not include FABP, the highest Brier Score was 0.932,

compared to 0.955 from the best combination which included FABP. This

large increase in performance provides a basis for suggesting the inclusion

of FABP in regular hospital testing, although the reasons why it failed to

perform as well when using only T0 samples are unclear.

Estimating the probability of AMI, rather than simply opting for a

binary (‘yes’ or ‘no’) classifier, has the potential for higher clinical acceptability

and utility as it aims to assist physician diagnosis rather than compete with

it. Also, estimates of the probability of AMI produced by a classifier can be

adjusted, via Bayes’ theorem, to accommodate variations in the prevalence

of AMI between different populations. This could assist in making the

classifier portable between different locations.

Evaluating the performance of a probabilistic classifier, however, is significantly

more difficult than for binary one, as demonstrated by the identification of
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multiple performance measures, namely discriminatory ability, sharpness

and reliability, in section 3.

This need for multiple performance measures is best observed by the fact

that there is no significant difference between the measures of discriminatory

ability (i.e. non-error rates (or accuracies), Brier scores or AUROCCs) of

the optimum classifier in each section. Alternative criteria must be used to

differentiate between these classifiers. The reliability measure, together with

the complexity of the classifier and appropriate sources of bias must also

be considered. This points to logistic regression with FDA preprocessing as

being a good candidate solution. This lack of difference in certain performance

measures can be viewed as reassuring—all classifiers perform similarly, and

selecting a good candidate does not involve hitting upon a golden preprocessing

algorithm.

Classifiers based on GMMs were over-parameterised which led their poor

reliability scores, reflecting a tendency to overfit the data, meaning that their

probabilities could not be trusted.

Compared to many pattern classification problems (for example, visual

recognition), diagnosing AMI is relatively straightforward—as the concentration

of a marker increases, the probability of AMI should increase too. Simple

classification techniques therefore, such as linear regression, are able to

capture these differences. This is demonstrated in the results presented, and

in unpublished preliminary work, in which more complex artificial neural

networks showed a strong tendency to overfit data and gave poor reliability.

This work has shown good initial progress in estimating the probability

of a patient having suffered an AMI, based upon the concentration of cardiac

markers in their blood. It has been limited by the number of patients

available to it, but classifier performance is expected to improve as more

data becomes available from ongoing clinical trials.

7 Future work

The data used in this study is part of a large ongoing hospital study

which, as of March 2004, has collected 4892 blood samples from some 1500
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eligible patients. Many of these samples are awaiting analysis. As more data

become available, investigations will be extended into three areas: the first

is detecting AMI as early as possible to enable rapid appropriate treatment

of patients. The second is sub-classification of patients along the continuum

coronary syndromes from non cardiac chest pain, through stable angina and

unstable angina to non-Q wave infarctions, where typically a thinner layer of

the heart is damaged, and finally Q wave infarctions which involve the death

of a large area of cardiac tissue. Currently a sharp division is drawn between

unstable angina (designated non-AMI) and non-Q wave MI (designated

AMI). The final area for additional research is for risk stratification or

prognostic information. Eventually it is hoped that a classifier (or classifiers)

may be integrated with the Evidence hardware to produce a device capable

of automatically analysing blood samples and giving relevant information

on a patient’s coronary health care to assist clinicians.

Originality and Contribution

Logistic Regression and Gaussian Mixture Model classifiers have been trained

to estimate the probability of acute myocardial infarction (AMI) based upon

the concentrations of cardiac markers obtained from hospital patient blood

samples. In contrast to previous studies, this work had access to measured

data on five markers simultaneously (CKMB, myoglobin, cTnI, GPBB and

FABP). The last two are more recently discovered and have not been used

in any previous classification system for coronary heart disease.

Logistic Regression, with data pre-processing by Fisher Discriminant

Analysis, provided the best overall classifier based only on blood samples

taken on admission. This gave an accuracy of 0.85 (with a 95% confidence

interval of 0.78-0.91) and a normalized Brier score of 0.89. When a second

sample taken 1 to 6 hours later was included in the classifier, the performance

increased significantly.

The benefit of measuring the concentrations of several markers is shown,

as classifiers with inputs from multiple markers outperformed those for a
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single marker. In particular, the new FABP marker proved to be a useful

addition to the classifier.
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Classifier NER AUROCC Brier score Reliability

Logistic Regression (LR) 0.868 0.913 0.904 -0.013
LR with PCA 0.862 0.906 0.895 -0.018
LR with FDA 0.849 0.908 0.887 -0.001

GMM 0.843 0.918 0.896 -0.030
GMM with PCA 0.855 0.840 0.861 -0.099

Table 1 Comparison of classification techniques based upon blood samples taken
at admission (T0)
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Classifier NER AUROCC Brier score Reliability

Logistic Regression (LR) 0.955 0.959 0.960 -0.018
LR with 5 PCs 0.902 0.956 0.920 -0.035
LR with FDA 0.902 0.923 0.923 -0.014

Table 2 Comparison of classification techniques based upon blood samples taken
at T0 and T1
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Number of PCs NER Brier Score Reliability

1 0.843 0.883 -0.009
2 0.836 0.877 -0.017
3 0.862 0.895 -0.018
4 0.855 0.895 -0.019
5 0.855 0.896 -0.023

Table 3 Performance of logistic regression classifier with increasing numbers of
principal components as inputs using samples on admission
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Number of PCs NER Brier Score Reliability

1 0.879 0.913 -0.013
2 0.879 0.913 -0.018
3 0.879 0.910 -0.023
4 0.879 0.904 -0.034
5 0.902 0.920 -0.035
6 0.902 0.920 -0.043
7 0.894 0.912 -0.054
8 0.917 0.928 -0.044
9 0.924 0.935 -0.046
10 0.909 0.927 -0.056

Table 4 Performance of logistic regression classifier with increasing numbers of
principal components as inputs and two time samples
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PC Fractional Variance Cumulative

1 0.58 0.58
2 0.21 0.79
3 0.15 0.94
4 0.03 0.98
5 0.02 1.00

Table 5 Variation captured by each principal component using samples on
admission.
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PC Fractional Variance Cumulative

1 0.58 0.58
2 0.14 0.72
3 0.10 0.82
4 0.08 0.90
5 0.03 0.93
6 0.02 0.96
7 0.02 0.97
8 0.01 0.99
9 0.007 0.99
10 0.006 1.00

Table 6 Variation captured by each principal component using samples at T0
and T1.
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Number of samples NER AUROCC Brier Score Reliability

1 0.8491 (0.784–0.901) 0.908 (0.029) 0.8874 -0.0011
2 0.9015 (0.837–0.947) 0.923 (0.022) 0.9228 -0.0142

Table 7 Performance of classifiers trained using FDA preprocessing. The ‘number
of samples’ column refers to the number of blood samples used from a given
patient, so that ‘1’ indicated only blood taken on admission was used, and ‘2’
indicates blood taken on admission and at a later time.
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PCs AMI centres Non-AMI centres NER Brier score Reliability

1 1 2 0.811 0.842 -0.083
2 4 5 0.811 0.853 -0.065
3 1 3 0.843 0.856 -0.110
4 1 3 0.811 0.852 -0.111
5 4 5 0.855 0.861 -0.099

Table 8 Performance of GMM classifier with PCA pre-processing
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