161 research outputs found
Unusual interplay between copper-spin and vortex dynamics in slightly overdoped La{1.83}Sr{0.17}CuO{4}
Our inelastic neutron scattering experiments of the spin excitations in the
slightly overdoped La{1.83}Sr{0.17}CuO{4} compound show that, under the
application of a magnetic field of 5 Tesla, the low-temperature susceptibility
undergoes a weight redistribution centered at the spin-gap energy. Furthermore,
by comparing the temperature dependence of the neutron data with
ac-susceptibility and magnetization measurements, we conclude that the filling
in of the spin gap tracks the irreversibility/melting temperature rather than
Tc2, which indicates an unusual interplay between the magnetic vortices and the
spin excitations even in the slightly overdoped regime of high-temperature
superconductors.Comment: 7 pages, including 5 figure
Unexpected phase locking of magnetic fluctuations in the multi-k magnet USb
The spin waves in the multi-k antiferromagnet USb soften and become quasielastic well below the antiferromagnetic ordering temperature TN. This occurs without a magnetic or structural transition. It has been suggested that this change is in fact due to dephasing of the different multi-k components: a switch from 3-k to 1-k behavior. In this work, we use inelastic neutron scattering with tridirectional polarization analysis to probe the quasielastic magnetic excitations and reveal that the 3-k structure does not dephase. More surprisingly, the paramagnetic correlations also maintain the same clear phase correlations well above TN (up to at least 1.4TN)
Charge Ordering and Spin Dynamics in NaV2O5
We report high-resolution neutron inelastic scattering experiments on the
spin excitations of NaV2O5. Below Tc, two branches associated with distinct
energy gaps are identified. From the dispersion and intensity of the spin
excitation modes, we deduce the precise zig-zag charge distribution on the
ladder rungs and the corresponding charge order (about 0.6). We argue that the
spin gaps observed in the low-T phase of this compound are primarily due to the
charge transfer.Comment: 4 pages, 5 figures, to appear in Phys. Rev. Let
Evidence of a bond-nematic phase in LiCuVO4
Polarized and unpolarized neutron scattering experiments on the frustrated
ferromagnetic spin-1/2 chain LiCuVO4 show that the phase transition at HQ of 8
Tesla is driven by quadrupolar fluctuations and that dipolar correlations are
short-range with moments parallel to the applied magnetic field in the
high-field phase. Heat-capacity measurements evidence a phase transition into
this high-field phase, with an anomaly clearly different from that at low
magnetic fields. Our experimental data are consistent with a picture where the
ground state above HQ has a next-nearest neighbour bond-nematic order along the
chains with a fluid-like coherence between weakly coupled chains.Comment: 5 pages, 4 figures. To appear in Phys. Rev. Let
Magnetic Excitations in NpCoGa5
We report the results of inelastic neutron scattering experiments on
NpCoGa, an isostructural analogue of the PuCoGa superconductor. Two
energy scales characterize the magnetic response in the antiferromagnetic
phase. One is related to a non-dispersive excitation between two crystal field
levels. The other at lower energies corresponds to dispersive fluctuations
emanating from the magnetic zone center. The fluctuations persist in the
paramagnetic phase also, although weaker in intensity. This supports the
possibility that magnetic fluctuations are present in PuCoGa, where
unconventional d-wave superconductivity is achieved in the absence of magnetic
order.Comment: 4 pages, 5 figure
Kinetics of the Multiferroic Switching in MnWO
The time dependence of switching multiferroic domains in MnWO has been
studied by time-resolved polarized neutron diffraction. Inverting an external
electric field inverts the chiral magnetic component within rise times ranging
between a few and some tens of milliseconds in perfect agreement with
macroscopic techniques. There is no evidence for any faster process in the
inversion of the chiral magnetic structure. The time dependence is well
described by a temperature-dependent rise time suggesting a well-defined
process of domain reversion. As expected, the rise times decrease when heating
towards the upper boundary of the ferroelectric phase. However, switching also
becomes faster upon cooling towards the lower boundary, which is associated
with a first-order phase transition
Spin correlations among the charge carriers in an ordered stripe phase
We have observed a diffuse component to the low-energy magnetic excitation
spectrum of stripe-ordered La5/3Sr1/3NiO4 probed by neutron inelastic
scattering. The diffuse scattering forms a square pattern with sides parallel
and perpendicular to the stripe directions. The signal is dispersive, with a
maximum energy of ~10 meV. Probed at 2 meV the scattering decreases in strength
with increasing temperature, and is barely visible at 100 K. We argue that the
signal originates from dynamic, quasi- one-dimensional, antiferromagnetic
correlations among the stripe electrons.Comment: 4 pages, 4 figures. To be published in Physical Review Letter
Suppression of hidden order in URu2Si2 under pressure and restoration in magnetic field
We describe here recent inelastic neutron scattering experiments on the heavy
fermion compound URu2Si2 realized in order to clarify the nature of the hidden
order (HO) phase which occurs below T_0 = 17.5 K at ambient pressure. The
choice was to measure at a given pressure P where the system will go, by
lowering the temperature, successively from paramagnetic (PM) to HO and then to
antiferromagnetic phase (AF). Furthermore, in order to verify the selection of
the pressure, a macroscopic detection of the phase transitions was also
achieved in situ via its thermal expansion response detected by a strain gauge
glued on the crystal. Just above P_x = 0.5 GPa, where the ground state switches
from HO to AF, the Q_0 = (1, 0, 0) excitation disappears while the excitation
at the incommensurate wavevector Q_1 = (1.4, 0, 0) remains. Thus, the Q_0 = (1,
0, 0) excitation is intrinsic only in the HO phase. This result is reinforced
by studies where now pressure and magnetic field can be used as tuning
variable. Above P_x, the AF phase at low temperature is destroyed by a magnetic
field larger than H_AF (collapse of the AF Q_0 = (1, 0, 0) Bragg reflection).
The field reentrance of the HO phase is demonstrated by the reappearance of its
characteristic Q_0 = (1, 0, 0) excitation. The recovery of a PM phase will only
be achieved far above H_AF at H_M approx 35 T. To determine the P-H-T phase
diagram of URu2Si2, macroscopic measurements of the thermal expansion were
realized with a strain gauge. The reentrant magnetic field increases strongly
with pressure. Finally, to investigate the interplay between superconductivity
(SC) and spin dynamics, new inelastic neutron scattering experiments are
reported down to 0.4 K, far below the superconducting critical temperature T_SC
approx 1.3 K as measured on our crystal by diamagnetic shielding.Comment: 5 pages, 7 figures, ICN 2009 conference proceeding
Highly Dispersive Spin Excitations in the Chain Cuprate Li2CuO2
We present an inelastic neutron scattering investigation of Li2CuO2 detecting
the long sought quasi-1D magnetic excitations with a large dispersion along the
CuO2-chains studied up to 25 meV. The total dispersion is governed by a
surprisingly large ferromagnetic (FM) nearest-neighbor exchange integral
J1=-228 K. An anomalous quartic dispersion near the zone center and a
pronounced minimum near (0,0.11,0.5) r.l.u. (corresponding to a spiral
excitation with a pitch angle about 41 degree point to the vicinity of a 3D
FM-spiral critical point. The leading exchange couplings are obtained applying
standard linear spin-wave theory. The 2nd neighbor inter-chain interaction
suppresses a spiral state and drives the FM in-chain ordering below the Ne'el
temperature. The obtained exchange parameters are in agreement with the results
for a realistic five-band extended Hubbard Cu 3d O 2p model and L(S)DA+U
predictions.Comment: 6 pages, 4 figures, submitted to Europhys. Let
- …