161 research outputs found

    Unusual interplay between copper-spin and vortex dynamics in slightly overdoped La{1.83}Sr{0.17}CuO{4}

    Full text link
    Our inelastic neutron scattering experiments of the spin excitations in the slightly overdoped La{1.83}Sr{0.17}CuO{4} compound show that, under the application of a magnetic field of 5 Tesla, the low-temperature susceptibility undergoes a weight redistribution centered at the spin-gap energy. Furthermore, by comparing the temperature dependence of the neutron data with ac-susceptibility and magnetization measurements, we conclude that the filling in of the spin gap tracks the irreversibility/melting temperature rather than Tc2, which indicates an unusual interplay between the magnetic vortices and the spin excitations even in the slightly overdoped regime of high-temperature superconductors.Comment: 7 pages, including 5 figure

    Unexpected phase locking of magnetic fluctuations in the multi-k magnet USb

    Get PDF
    The spin waves in the multi-k antiferromagnet USb soften and become quasielastic well below the antiferromagnetic ordering temperature TN. This occurs without a magnetic or structural transition. It has been suggested that this change is in fact due to dephasing of the different multi-k components: a switch from 3-k to 1-k behavior. In this work, we use inelastic neutron scattering with tridirectional polarization analysis to probe the quasielastic magnetic excitations and reveal that the 3-k structure does not dephase. More surprisingly, the paramagnetic correlations also maintain the same clear phase correlations well above TN (up to at least 1.4TN)

    Charge Ordering and Spin Dynamics in NaV2O5

    Full text link
    We report high-resolution neutron inelastic scattering experiments on the spin excitations of NaV2O5. Below Tc, two branches associated with distinct energy gaps are identified. From the dispersion and intensity of the spin excitation modes, we deduce the precise zig-zag charge distribution on the ladder rungs and the corresponding charge order (about 0.6). We argue that the spin gaps observed in the low-T phase of this compound are primarily due to the charge transfer.Comment: 4 pages, 5 figures, to appear in Phys. Rev. Let

    Evidence of a bond-nematic phase in LiCuVO4

    Full text link
    Polarized and unpolarized neutron scattering experiments on the frustrated ferromagnetic spin-1/2 chain LiCuVO4 show that the phase transition at HQ of 8 Tesla is driven by quadrupolar fluctuations and that dipolar correlations are short-range with moments parallel to the applied magnetic field in the high-field phase. Heat-capacity measurements evidence a phase transition into this high-field phase, with an anomaly clearly different from that at low magnetic fields. Our experimental data are consistent with a picture where the ground state above HQ has a next-nearest neighbour bond-nematic order along the chains with a fluid-like coherence between weakly coupled chains.Comment: 5 pages, 4 figures. To appear in Phys. Rev. Let

    Magnetic Excitations in NpCoGa5

    Full text link
    We report the results of inelastic neutron scattering experiments on NpCoGa5_{5}, an isostructural analogue of the PuCoGa5_{5} superconductor. Two energy scales characterize the magnetic response in the antiferromagnetic phase. One is related to a non-dispersive excitation between two crystal field levels. The other at lower energies corresponds to dispersive fluctuations emanating from the magnetic zone center. The fluctuations persist in the paramagnetic phase also, although weaker in intensity. This supports the possibility that magnetic fluctuations are present in PuCoGa5_{5}, where unconventional d-wave superconductivity is achieved in the absence of magnetic order.Comment: 4 pages, 5 figure

    Kinetics of the Multiferroic Switching in MnWO4_4

    Get PDF
    The time dependence of switching multiferroic domains in MnWO4_4 has been studied by time-resolved polarized neutron diffraction. Inverting an external electric field inverts the chiral magnetic component within rise times ranging between a few and some tens of milliseconds in perfect agreement with macroscopic techniques. There is no evidence for any faster process in the inversion of the chiral magnetic structure. The time dependence is well described by a temperature-dependent rise time suggesting a well-defined process of domain reversion. As expected, the rise times decrease when heating towards the upper boundary of the ferroelectric phase. However, switching also becomes faster upon cooling towards the lower boundary, which is associated with a first-order phase transition

    Spin correlations among the charge carriers in an ordered stripe phase

    Full text link
    We have observed a diffuse component to the low-energy magnetic excitation spectrum of stripe-ordered La5/3Sr1/3NiO4 probed by neutron inelastic scattering. The diffuse scattering forms a square pattern with sides parallel and perpendicular to the stripe directions. The signal is dispersive, with a maximum energy of ~10 meV. Probed at 2 meV the scattering decreases in strength with increasing temperature, and is barely visible at 100 K. We argue that the signal originates from dynamic, quasi- one-dimensional, antiferromagnetic correlations among the stripe electrons.Comment: 4 pages, 4 figures. To be published in Physical Review Letter

    Suppression of hidden order in URu2Si2 under pressure and restoration in magnetic field

    Full text link
    We describe here recent inelastic neutron scattering experiments on the heavy fermion compound URu2Si2 realized in order to clarify the nature of the hidden order (HO) phase which occurs below T_0 = 17.5 K at ambient pressure. The choice was to measure at a given pressure P where the system will go, by lowering the temperature, successively from paramagnetic (PM) to HO and then to antiferromagnetic phase (AF). Furthermore, in order to verify the selection of the pressure, a macroscopic detection of the phase transitions was also achieved in situ via its thermal expansion response detected by a strain gauge glued on the crystal. Just above P_x = 0.5 GPa, where the ground state switches from HO to AF, the Q_0 = (1, 0, 0) excitation disappears while the excitation at the incommensurate wavevector Q_1 = (1.4, 0, 0) remains. Thus, the Q_0 = (1, 0, 0) excitation is intrinsic only in the HO phase. This result is reinforced by studies where now pressure and magnetic field HH can be used as tuning variable. Above P_x, the AF phase at low temperature is destroyed by a magnetic field larger than H_AF (collapse of the AF Q_0 = (1, 0, 0) Bragg reflection). The field reentrance of the HO phase is demonstrated by the reappearance of its characteristic Q_0 = (1, 0, 0) excitation. The recovery of a PM phase will only be achieved far above H_AF at H_M approx 35 T. To determine the P-H-T phase diagram of URu2Si2, macroscopic measurements of the thermal expansion were realized with a strain gauge. The reentrant magnetic field increases strongly with pressure. Finally, to investigate the interplay between superconductivity (SC) and spin dynamics, new inelastic neutron scattering experiments are reported down to 0.4 K, far below the superconducting critical temperature T_SC approx 1.3 K as measured on our crystal by diamagnetic shielding.Comment: 5 pages, 7 figures, ICN 2009 conference proceeding

    Highly Dispersive Spin Excitations in the Chain Cuprate Li2CuO2

    Full text link
    We present an inelastic neutron scattering investigation of Li2CuO2 detecting the long sought quasi-1D magnetic excitations with a large dispersion along the CuO2-chains studied up to 25 meV. The total dispersion is governed by a surprisingly large ferromagnetic (FM) nearest-neighbor exchange integral J1=-228 K. An anomalous quartic dispersion near the zone center and a pronounced minimum near (0,0.11,0.5) r.l.u. (corresponding to a spiral excitation with a pitch angle about 41 degree point to the vicinity of a 3D FM-spiral critical point. The leading exchange couplings are obtained applying standard linear spin-wave theory. The 2nd neighbor inter-chain interaction suppresses a spiral state and drives the FM in-chain ordering below the Ne'el temperature. The obtained exchange parameters are in agreement with the results for a realistic five-band extended Hubbard Cu 3d O 2p model and L(S)DA+U predictions.Comment: 6 pages, 4 figures, submitted to Europhys. Let
    corecore