3,871 research outputs found
Lateral Chirality-sorting Optical Spin Forces in Evanescent Fields
The transverse component of the spin angular momentum of evanescent waves
gives rise to lateral optical forces on chiral particles, which have the
unusual property of acting in a direction in which there is neither a field
gradient nor wave propagation. As their direction and strength depends on the
chiral polarizability of the particle, they act as chirality-sorting and may
offer a mechanism for passive chirality spectroscopy. The absolute strength of
the forces also substantially exceeds that of other recently predicted sideways
optical forces, such that they may more readily offer an experimental
confirmation of the phenomenon.Comment: 7 pages, 2 Figure
Connected to Give: Faith Communities
This is the third report in the "Connected to Give" series, and compares the relationship between the charitable giving behavior of American's from a variety of backgrounds, including their key demographics; an examination their motivations for giving; and the types of organizations to which they contribute
New Perspective on Passively Quenched Single Photon Avalanche Diodes: Effect of Feedback on Impact Ionization
Single-photon avalanche diodes (SPADs) are primary devices in photon counting systems used in quantum cryptography, time resolved spectroscopy and photon counting optical communication. SPADs convert each photo-generated electron hole pair to a measurable current via an avalanche of impact ionizations. In this paper, a stochastically self-regulating avalanche model for passively quenched SPADs is presented. The model predicts, in qualitative agreement with experiments, three important phenomena that traditional models are unable to predict. These are: (1) an oscillatory behavior of the persistent avalanche current; (2) an exponential (memoryless) decay of the probability density function of the stochastic quenching time of the persistent avalanche current; and (3) a fast collapse of the avalanche current, under strong feedback conditions, preventing the development of a persistent avalanche current. The model specifically captures the effect of the load’s feedback on the stochastic avalanche multiplication, an effect believed to be key in breaking today’s counting rate barrier in the 1.55–μm detection window
Artifact Rejection Methodology Enables Continuous, Noninvasive Measurement of Gastric Myoelectric Activity in Ambulatory Subjects.
The increasing prevalence of functional and motility gastrointestinal (GI) disorders is at odds with bottlenecks in their diagnosis, treatment, and follow-up. Lack of noninvasive approaches means that only specialized centers can perform objective assessment procedures. Abnormal GI muscular activity, which is coordinated by electrical slow-waves, may play a key role in symptoms. As such, the electrogastrogram (EGG), a noninvasive means to continuously monitor gastric electrical activity, can be used to inform diagnoses over broader populations. However, it is seldom used due to technical issues: inconsistent results from single-channel measurements and signal artifacts that make interpretation difficult and limit prolonged monitoring. Here, we overcome these limitations with a wearable multi-channel system and artifact removal signal processing methods. Our approach yields an increase of 0.56 in the mean correlation coefficient between EGG and the clinical "gold standard", gastric manometry, across 11 subjects (p < 0.001). We also demonstrate this system's usage for ambulatory monitoring, which reveals myoelectric dynamics in response to meals akin to gastric emptying patterns and circadian-related oscillations. Our approach is noninvasive, easy to administer, and has promise to widen the scope of populations with GI disorders for which clinicians can screen patients, diagnose disorders, and refine treatments objectively
Editorial Special Issue on Enhancement Algorithms, Methodologies and Technology for Spectral Sensing
The paper is an editorial issue on enhancement algorithms, methodologies and technology for spectral sensing and serves as a valuable and useful reference for researchers and technologists interested in the evolving state-of-the-art and/or the emerging science and technology base associated with spectral-based sensing and monitoring problem. This issue is particularly relevant to those seeking new and improved solutions for detecting chemical, biological, radiological and explosive threats on the land, sea, and in the air
SAR-Based Vibration Estimation Using the Discrete Fractional Fourier Transform
A vibration estimation method for synthetic aperture radar (SAR) is presented based on a novel application of the discrete fractional Fourier transform (DFRFT). Small vibrations of ground targets introduce phase modulation in the SAR returned signals. With standard preprocessing of the returned signals, followed by the application of the DFRFT, the time-varying accelerations, frequencies, and displacements associated with vibrating objects can be extracted by successively estimating the quasi-instantaneous chirp rate in the phase-modulated signal in each subaperture. The performance of the proposed method is investigated quantitatively, and the measurable vibration frequencies and displacements are determined. Simulation results show that the proposed method can successfully estimate a two-component vibration at practical signal-to-noise levels. Two airborne experiments were also conducted using the Lynx SAR system in conjunction with vibrating ground test targets. The experiments demonstrated the correct estimation of a 1-Hz vibration with an amplitude of 1.5 cm and a 5-Hz vibration with an amplitude of 1.5 mm
Violation of Heisenberg's Measurement-Disturbance Relationship by Weak Measurements
While there is a rigorously proven relationship about uncertainties intrinsic
to any quantum system, often referred to as "Heisenberg's Uncertainty
Principle," Heisenberg originally formulated his ideas in terms of a
relationship between the precision of a measurement and the disturbance it must
create. Although this latter relationship is not rigorously proven, it is
commonly believed (and taught) as an aspect of the broader uncertainty
principle. Here, we experimentally observe a violation of Heisenberg's
"measurement-disturbance relationship", using weak measurements to characterize
a quantum system before and after it interacts with a measurement apparatus.
Our experiment implements a 2010 proposal of Lund and Wiseman to confirm a
revised measurement-disturbance relationship derived by Ozawa in 2003. Its
results have broad implications for the foundations of quantum mechanics and
for practical issues in quantum mechanics.Comment: 5 pages, 4 figure
Not All Children with Cystic Fibrosis Have Abnormal Esophageal Neutralization during Chemical Clearance of Acid Reflux.
PurposeAcid neutralization during chemical clearance is significantly prolonged in children with cystic fibrosis, compared to symptomatic children without cystic fibrosis. The absence of available reference values impeded identification of abnormal findings within individual patients with and without cystic fibrosis. The present study aimed to test the hypothesis that significantly more children with cystic fibrosis have acid neutralization durations during chemical clearance that fall outside the physiological range.MethodsPublished reference value for acid neutralization duration during chemical clearance (determined using combined impedance/pH monitoring) was used to assess esophageal acid neutralization efficiency during chemical clearance in 16 children with cystic fibrosis (3 to <18 years) and 16 age-matched children without cystic fibrosis.ResultsDuration of acid neutralization during chemical clearance exceeded the upper end of the physiological range in 9 of 16 (56.3%) children with and in 3 of 16 (18.8%) children without cystic fibrosis (p=0.0412). The likelihood ratio for duration indicated that children with cystic fibrosis are 2.1-times more likely to have abnormal acid neutralization during chemical clearance, and children with abnormal acid neutralization during chemical clearance are 1.5-times more likely to have cystic fibrosis.ConclusionSignificantly more (but not all) children with cystic fibrosis have abnormally prolonged esophageal clearance of acid. Children with cystic fibrosis are more likely to have abnormal acid neutralization during chemical clearance. Additional studies involving larger sample sizes are needed to address the importance of genotype, esophageal motility, composition and volume of saliva, and gastric acidity on acid neutralization efficiency in cystic fibrosis children
Andreev Reflection without Fermi surface alignment in High T-Topological heterostructures
We address the controversy over the proximity effect between topological
materials and high T superconductors. Junctions are produced between
BiSrCaCuO and materials with different Fermi
surfaces (BiTe \& graphite). Both cases reveal tunneling spectra
consistent with Andreev reflection. This is confirmed by magnetic field that
shifts features via the Doppler effect. This is modeled with a single parameter
that accounts for tunneling into a screening supercurrent. Thus the tunneling
involves Cooper pairs crossing the heterostructure, showing the Fermi surface
mis-match does not hinder the ability to form transparent interfaces, which is
accounted for by the extended Brillouin zone and different lattice symmetries
- …
