16 research outputs found

    microRNA 184 regulates expression of NFAT1 in umbilical cord blood CD4+ T cells

    No full text
    The reduced expression of nuclear factor of activated T cells-1 (NFAT1) protein in umbilical cord blood (UCB)–derived CD4+ T cells and the corresponding reduction in inflammatory cytokine secretion after stimulation in part underlies their phenotypic differences from adult blood (AB) CD4+ T cells. This muted response may contribute to the lower incidence and severity of high-grade acute graft-versus-host disease (aGVHD) exhibited by UCB grafts. Here we provide evidence that a specific microRNA, miR-184, inhibits NFAT1 protein expression elicited by UCB CD4+ T cells. Endogenous expression of miR-184 in UCB is 58.4-fold higher compared with AB CD4+ T cells, and miR-184 blocks production of NFAT1 protein through its complementary target sequence on the NFATc2 mRNA without transcript degradation. Furthermore, its negative effects on NFAT1 protein and downstream interleukin-2 (IL-2) transcription are reversed through antisense blocking in UCB and can be replicated via exogenous transfection of precursor miR-184 into AB CD4+ T cells. Our findings reveal a previously uncharacterized role for miR-184 in UCB CD4+ T cells and a novel function for microRNA in the early adaptive immune response

    Complete genome sequence of a Legionella longbeachae serogroup 2 isolate derived from a patient with Legionnaires’ disease

    No full text
    Legionella longbeachae is the predominant cause of Legionnaires’ disease (LD) in New Zealand. Although serogroup 2 (sg2) does not contain the most clinically significant strain, it is an important cause of disease. Here, we report the complete genome sequence of an sg2 isolate from a patient who was hospitalized with LD

    Long-Range Effects of Retroviral Insertion on c-myb: Overexpression May Be Obscured by Silencing during Tumor Growth In Vitro

    No full text
    The c-myb oncogene is a frequent target for retroviral activation in hemopoietic tumors of avian and mammalian species. While insertions can target the gene directly, numerous clusters of retroviral insertion sites have been identified which map close to c-myb and outside the transcription unit in T-lymphomas (Ahi-1, fit-1, and Mis-2) and monocytic and myeloid leukemias (Mml1, Mml2, Mml3, and Epi-1). Previous analyses showed no consistent effect of these insertions on c-myb expression, raising the possibility that other nearby genes were the true targets. In contrast, our analysis of four cell lines established from lymphomas bearing insertions at fit-1 (fti-1) (feline leukemia virus) and Ahi-1 (Moloney murine leukemia virus) shows that these display higher expression levels of c-myb RNA and protein compared to a panel of phenotypically similar cell lines lacking such insertions. An interesting feature of the cell lines with long-range c-myb insertions was that each also carried an activated Myc allele. The potential for oncogenic synergy between Myb and Myc in T-cell lymphoma was confirmed in transgenic mice overexpressing alleles of both genes in the T-cell compartment, lending further credence to the case for c-myb as the major target for long-range activation. In contrast, mapping and analysis of c-myb neighboring genes (HBS1 and FLJ20069) showed that the expression of these genes did not correlate well with the presence of proviral insertions. A possible explanation for the paradoxical behavior of c-myb was provided by one of the murine T-lymphoma lines bearing an insertion at Ahi-1 (p/m16i) that reproducibly down-regulated c-myb RNA and protein to very low levels or undetectable levels on prolonged culture. Our observations implicate c-myb as a key target of upstream and downstream retroviral insertions. However, overexpression may become dispensable during outgrowth in vitro, and perhaps during tumor progression in vivo, providing a potential rationale for the previously observed discordance between retroviral insertion and c-myb expression levels

    Regulation of IL-2 expression by transcription factor BACH2 in umbilical cord blood CD4+ T cells

    No full text
    On activation, umbilical cord blood (UCB) CD4+ T cells demonstrate reduced expression of tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ), where as maintaining equivalent interleukin-2 (IL-2) levels, as compared with adult peripheral blood (PB) CD4þ T cells. Nuclear factor of activated T cells (NFAT1) protein, a transcription factor known to regulate the expression of IL-2, TNF-α and IFN-γ, is reduced in resting and activated UCB CD4+ T cells. In contrast, expression of Broad-complex-Tramtrack-Bric-a-Brac and Cap n collar homology 1 bZip transcription factor 2 (BACH2) was shown by gene array analyses to be increased in UCB CD4+ T cells and was validated by qRT-PCR. Using chromatin immunoprecipitation, BACH2 was shown binding to the human IL-2 proximal promoter. Knockdown experiments of BACH2 by transient transfection of UCB CD4+ T cells with BACH2 siRNA resulted in significant reductions in stimulated IL-2 production. Decreased IL-2 gene transcription in UCB CD4+ T cells transfected with BACH2 siRNA was confirmed by a human IL-2 luciferase assay. In summary, BACH2 maintains IL-2 expression in UCB CD4þ T cells at levels equivalent to adult PB CD4+ T cells despite reduced NFAT1 protein expression. Thus, BACH2 expression is necessary to maintain IL-2 production when NFAT1 protein is reduced, potentially impacting UCB graft CD4+ T-cell allogeneic responses

    Escape of tick-borne flavivirus from 2’-C-methylated nucleoside antivirals is mediated by a single conservative mutation in NS5 that has a dramatic effect on viral fitness

    No full text
    Tick-borne encephalitis virus (TBEV) causes a severe and potentially fatal neuroinfection in humans. Despite its high medical relevance, no specific antiviral therapy is currently available. Here we demonstrate that treatment with a nucleoside analog, 7-deaza-2' -C-methyladenosine (7-deaza-2' -CMA), substantially improved disease outcome, increased survival, and reduced signs of neuroinfection and viral titers in the brains of mice infected with a lethal dose of TBEV. To investigate the mechanism of action of 7-deaza-2' -CMA, two drug-resistant TBEV clones were generated and characterized. The two clones shared a signature amino acid substitution, S603T, in the viral NS5 RNA-dependent RNA polymerase (RdRp) domain. This mutation conferred resistance to various 2' -C-methylated nucleoside derivatives, but no cross-resistance was seen to other nucleoside analogs, such as 4' -C-azidocytidine and 2' -deoxy-2' -beta-hydroxy-4' -azidocytidine (RO-9187). All-atom molecular dynamics simulations revealed that the S603T RdRp mutant repels a water molecule that coordinates the position of a metal ion cofactor as 2' -C-methylated nucleoside analogs approach the active site. To investigate its phenotype, the S603T mutation was introduced into a recombinant TBEV (Oshima-IC) generated from an infectious cDNA clone and into a TBEV replicon that expresses a reporter luciferase gene (Oshima-REP-luc2A). The mutants were replication-impaired, showing reduced growth and small plaque size in mammalian cell culture and reduced levels of neuroinvasiveness and neurovirulence in rodent models. These results indicate that TBEV resistance to 2' -C-methylated nucleoside inhibitors is conferred by a single conservative mutation that causes a subtle atomic effect within the active site of viral NS5 RdRp and is associated with strong attenuation of the virus.Importance This study found that the nucleoside analog 7-deaza-2' -C-methyladenosine (7-deaza-2' -CMA) has high antiviral activity against tick-borne encephalitis virus (TBEV), a pathogen that causes severe human neuroinfections in large areas of Europe and Asia and for which there is currently no specific therapy. Treating mice infected with a lethal dose of TBEV with 7-deaza-2' -CMA resulted in significantly higher survival rates, reduced the severity of neurological signs of the disease. Thus, this compound shows promise for further development as an anti-TBEV drug. It is important to generate drug-resistant mutants to understand how the drug works and to develop guidelines for patient treatment. We generated TBEV mutants that were resistant not only to 7-deaza-2' -CMA but also to a broad range of other 2' -C-methylated antiviral medications. Our findings suggest that combination therapy could be used to improve treatment and reduce the emergence of drug-resistant viruses during nucleoside analog therapy for TBEV infection.status: publishe

    Identification of genes that synergize with Cbfb-MYH11 in the pathogenesis of acute myeloid leukemia

    No full text
    Acute myeloid leukemia subtype M4 with eosinophilia is associated with a chromosome 16 inversion that creates a fusion gene CBFB-MYH11. We have previously shown that CBFB-MYH11 is necessary but not sufficient for leukemogenesis. Here, we report the identification of genes that specifically cooperate with CBFB-MYH11 in leukemogenesis. Neonatal injection of Cbfb-MYH11 knock-in chimeric mice with retrovirus 4070A led to the development of acute myeloid leukemia in 2-5 months. Each leukemia sample contained one or a few viral insertions, suggesting that alteration of one gene could be sufficient to synergize with Cbfb-MYH11. The chromosomal position of 67 independent retroviral insertion sites (RISs) was determined, and 90% of the RISs mapped within 10 kb of a flanking gene. In total, 54 candidate genes were identified; six of them were common insertion sites (CISs). CIS genes included members of a zinc finger transcription factors family, Plag1 and Plagl2, with eight and two independent insertions, respectively. CIS genes also included Runx2, Myb, H2T24, and D6Mm5e. Comparison of the remaining 48 genes with single insertion sites with known leukemia-associated RISs indicated that 18 coincide with known RISs. To our knowledge, this retroviral genetic screen is the first to identify genes that cooperate with a fusion gene important for human myeloid leukemia
    corecore