40 research outputs found

    Контроль выбросов вспомогательных корпусов АЭС: состояние и пути совершенствования

    Get PDF
    Произведен анализ состояния системы контроля выбросов через вентиляционные системы СК АЭС с ВВЭР на примере Запорожской АЭС (ЗАЭС)

    Семантические барьеры в деловой коммуникации

    Get PDF
    Статья из специализированного выпуска научного журнала "Культура народов Причерноморья", материалы которого объединены общей темой "Язык и Мир" и посвящены общим вопросам Языкознания и приурочены к 80-летию со дня рождения Николая Александровича Рудякова.Стаття із спеціалізованого випуску наукового журналу "Культура народов Причерноморья", матеріали якого поєднані загальною темою "Мова і Світ" і присвячені загальним питанням мовознавства і приурочені до 80-річчя з дня народження Миколи Олександровича Рудякова

    The future sea-level rise contribution of Greenland’s glaciers and ice caps

    Get PDF
    We calculate the future sea-level rise contribution from the surface mass balance of all of Greenland's glaciers and ice caps (GICs, ~90 000 km2) using a simplified energy balance model which is driven by three future climate scenarios from the regional climate models HIRHAM5, RACMO2 and MAR. Glacier extent and surface elevation are modified during the mass balance model runs according to a glacier retreat parameterization. Mass balance and glacier surface change are both calculated on a 250 m resolution digital elevation model yielding a high level of detail and ensuring that important feedback mechanisms are considered. The mass loss of all GICs by 2098 is calculated to be 2016 ± 129 Gt (HIRHAM5 forcing), 2584 ± 109 Gt (RACMO2) and 3907 ± 108 Gt (MAR). This corresponds to a total contribution to sea-level rise of 5.8 ± 0.4, 7.4 ± 0.3 and 11.2 ± 0.3 mm, respectively. Sensitivity experiments suggest that mass loss could be higher by 20–30% if a strong lowering of the surface albedo were to take place in the future. It is shown that the sea-level rise contribution from the north-easterly regions of Greenland is reduced by increasing precipitation while mass loss in the southern half of Greenland is dominated by steadily decreasing summer mass balances. In addition we observe glaciers in the north-eastern part of Greenland changing their characteristics towards greater activity and mass turnover

    Present and future near-surface wind climate of Greenland from high resolution regional climate modelling

    No full text
    The present and twenty-first century near-surface wind climate of Greenland is presented using output from the regional atmospheric climate model RACMO2. The modelled wind variability and wind distribution compare favourably to observations from three automatic weather stations in the ablation zone of southwest Greenland. The Weibull shape parameter is used to classify the wind climate. High values (κ > 4) are found in northern Greenland, indicative of uniform winds and a dominant katabatic forcing, while lower values (κ < 3) are found over the ocean and southern Greenland, where the synoptic forcing dominates. Very high values of the shape parameter are found over concave topography where confluence strengthens the katabatic circulation, while very low values are found in a narrow band along the coast due to barrier winds. To simulate the future (2081-2098) wind climate RACMO2 was forced with the HadGEM2-ES general circulation model using a scenario of mid-range radiative forcing of +4.5 W m-2 by 2100. For the future simulated climate, the near-surface potential temperature deficit reduces in all seasons in regions where the surface temperature is below the freezing point, indicating a reduction in strength of the near-surface temperature inversion layer. This leads to a wind speed reduction over the central ice sheet where katabatic forcing dominates, and a wind speed increase over steep coastal topography due to counteracting effects of thermal and katabatic forcing. Thermally forced winds over the seasonally sea ice covered region of the Greenland Sea are reduced by up to 2.5 m s-1

    Sensitivity of Greenland Ice Sheet surface mass balance to surface albedo parameterization: a study with a regional climate model

    Get PDF
    We present a sensitivity study of the surface mass balance (SMB) of the Greenland Ice Sheet, as modeled using a regional atmospheric climate model, to various parameter settings in the albedo scheme. The snow albedo scheme uses grain size as a prognostic variable and further depends on cloud cover, solar zenith angle and black carbon concentration. For the control experiment the overestimation of absorbed shortwave radiation (+6%) at the K-transect (west Greenland) for the period 2004–2009 is considerably reduced compared to the previous density-dependent albedo scheme (+22%). To simulate realistic snow albedo values, a small concentration of black carbon is needed, which has strongest impact on melt in the accumulation area. A background ice albedo field derived from MODIS imagery improves the agreement between the modeled and observed SMB gradient along the K-transect. The effect of enhanced meltwater retention and refreezing is a decrease of the albedo due to an increase in snow grain size. As a secondary effect of refreezing the snowpack is heated, enhancing melt and further lowering the albedo. Especially in a warmer climate this process is important, since it reduces the refreezing potential of the firn layer that covers the Greenland Ice Sheet

    Arne Richter Award for Outstanding Young Scientists Lecture

    Full text link
    With the aim of estimating the sea level rise (SLR) coming from Surface Mass Balance (SMB) changes over the Greenland ice sheet (GrIS), we report future projections obtained with the regional climate model MAR, forced by outputs of three CMIP5 General Circulation Models (GCMs). Our results indicate that in warmer climates, the mass gained due to increased winter snowfall over GrIS does not compensate the mass lost through increased meltwater run-off in summer. All the MAR projections shows similar non-linear melt increases with rising temperatures as a result of the positive surface albedo feedback, because no change is projected in the general atmospheric circulation over Greenland. Nevertheless, MAR exhibits a large range in its future projections. By coarsely estimating the GrIS SMB changes from CMIP5 GCMs outputs, we show that the uncertainty coming from the GCM-based forcing represents about half of projected SMB changes. In 2100, the CMIP5 ensemble mean projects a SLR, resulting from a GrIS SMB decrease, estimated to be 4 2 cm and 9 4 cm for the RCP 4.5 and RCP 8.5 scenarios, respectively. However, these future projections do not consider the positive melt-elevation feedback. Sensitivity MAR experiments using perturbed ice sheet topographies consistent with the projected SMB changes highlight the importance of coupling climate models to an ice sheet model. Such a coupling will allow to consider the future response of both surface processes and ice-dynamic changes, and their mutual feedbacks to rising temperatures
    corecore