727 research outputs found

    A multiple replica approach to simulate reactive trajectories

    Full text link
    A method to generate reactive trajectories, namely equilibrium trajectories leaving a metastable state and ending in another one is proposed. The algorithm is based on simulating in parallel many copies of the system, and selecting the replicas which have reached the highest values along a chosen one-dimensional reaction coordinate. This reaction coordinate does not need to precisely describe all the metastabilities of the system for the method to give reliable results. An extension of the algorithm to compute transition times from one metastable state to another one is also presented. We demonstrate the interest of the method on two simple cases: a one-dimensional two-well potential and a two-dimensional potential exhibiting two channels to pass from one metastable state to another one

    Extension of SEA model to subsystems with non-uniform modal energy distribution

    Get PDF
    International audienceIn order to enlarge the application field of Statistical Energy Analysis (SEA), a reformulation is proposed. The model described here, Statistical modal Energy distribution Analysis (SmEdA), does not assume equipartition of modal energies contrary to classical SEA. Theoretical derivations are based on dual modal formulation described in [1,2] for the general case of coupled continuous elastic systems. Basic SEA relations describing power flow exchanged by two oscillators are used to obtain modal energy equations. They permit to determine modal energies of coupled subsystems from the knowledge of modes of uncoupled subsystems. The link between SEA and SmEdA is established and render possible to mix the two approaches: SmEdA for subsystems where equipartition is not verified and SEA for other subsystems. Three typical configurations of structural couplings are described for which SmEdA improves energy prediction compared to SEA: (a) coupling of subsystems with low modal overlap. (b) coupling of heterogeneous subsystems. (c) case of localised excitations. The application of the proposed method is not limited to academic structures, but could easily be applied to complex structures by using finite element method (FEM). In this case, FEM are used to calculate the modes of each uncoupled subsystems; these data are then used in a second step to determine modal coupling factors necessary to SmEdA to modelise the coupling

    Detection of confinement and jumps in single molecule membrane trajectories

    Full text link
    We propose a novel variant of the algorithm by Simson et al. [R. Simson, E.D. Sheets, K. Jacobson, Biophys. J. 69, 989 (1995)]. Their algorithm was developed to detect transient confinement zones in experimental single particle tracking trajectories of diffusing membrane proteins or lipids. We show that our algorithm is able to detect confinement in a wider class of confining potential shapes than Simson et al.'s one. Furthermore it enables to detect not only temporary confinement but also jumps between confinement zones. Jumps are predicted by membrane skeleton fence and picket models. In the case of experimental trajectories of ÎĽ\mu-opioid receptors, which belong to the family of G-protein-coupled receptors involved in a signal transduction pathway, this algorithm confirms that confinement cannot be explained solely by rigid fences.Comment: 4 pages, 3 figure

    Use of beamforming for detecting an acoustic source inside a cylindrical shell filled with a heavy fluid

    Get PDF
    International audienceThe acoustic detection of defects or leaks inside a cylindrical shell containing a fluid is of prime importance in the industry, particularly in the nuclear field. This paper examines the beamforming technique which is used to detect and locate the presence of an acoustic monopole inside a cylindrical elastic shell by measuring the external shell vibrations. In order to study the effect of fluid-structure interactions and the distance of the source from the array of sensors, a vibro-acoustic model of the fluid-loaded shell is first considered for numerical experiments. The beamforming technique is then applied to radial velocities of the shell calculated with the model. Different parameters such as the distance between sensors, the radial position of the source, the damping loss factor of the shell, or of the fluid, and modifications of fluid properties can be considered without difficulty. Analysis of thes

    Resonance modes in a 1D medium with two purely resistive boundaries: calculation methods, orthogonality and completeness

    Get PDF
    Studying the problem of wave propagation in media with resistive boundaries can be made by searching for "resonance modes" or free oscillations regimes. In the present article, a simple case is investigated, which allows one to enlighten the respective interest of different, classical methods, some of them being rather delicate. This case is the 1D propagation in a homogeneous medium having two purely resistive terminations, the calculation of the Green function being done without any approximation using three methods. The first one is the straightforward use of the closed-form solution in the frequency domain and the residue calculus. Then the method of separation of variables (space and time) leads to a solution depending on the initial conditions. The question of the orthogonality and completeness of the complex-valued resonance modes is investigated, leading to the expression of a particular scalar product. The last method is the expansion in biorthogonal modes in the frequency domain, the modes having eigenfrequencies depending on the frequency. Results of the three methods generalize or/and correct some results already existing in the literature, and exhibit the particular difficulty of the treatment of the constant mode

    Stacking order dynamic in the quasi-two-dimensional dichalcogenide 1T-TaS2_2 probed with MeV ultrafast electron diffraction

    Full text link
    Transitions between different charge density wave (CDW) states in quasi-two-dimensional materials may be accompanied also by changes in the inter-layer stacking of the CDW. Using MeV ultrafast electron diffraction, the out-of-plane stacking order dynamics in the quasi-two-dimensional dichalcogenide 1T-TaS2_2 is investigated for the first time. From the intensity of the CDW satellites aligned around the commensurate ll = 1/6 characteristic stacking order, it is found out that this phase disappears with a 0.5 ps time constant. Simultaneously, in the same experiment, the emergence of the incommensurate phase, with a slightly slower 2.0 ps time constant, is determined from the intensity of the CDW satellites aligned around the incommensurate ll = 1/3 characteristic stacking order. These results might be of relevance in understanding the metallic character of the laser-induced metastable "hidden" state recently discovered in this compound

    Management of natural resources through automatic cartographic inventory

    Get PDF
    The author has identified the following significant results. Significant results of the ARNICA program (February - December 1973) were: (1) The quantitative processing of ERTS-1 data was developed along two lines: the study of geological structures and lineaments of Spanish Catalonia, and the phytogeographical study of the forest region of the Landes of Gascony (France). In both cases it is shown that the ERTS-1 imagery can be used in establishing zonings of equal quantitative interpretation value. (2) In keeping with the operational transfer program proposed in previous reports between exploration of the imagery and charting of the object, a precise data processing method was developed, concerning more particularly the selection of digital equidensity samples computer display and rigorous referencing

    Spin configurations in Co2FeAl0.4Si0.6 Heusler alloy thin film elements

    Full text link
    We determine experimentally the spin structure of half-metallic Co2FeAl0.4Si0.6 Heusler alloy elements using magnetic microscopy. Following magnetic saturation, the dominant magnetic states consist of quasi-uniform configurations, where a strong influence from the magnetocrystalline anisotropy is visible. Heating experiments show the stability of the spin configuration of domain walls in confined geometries up to 800 K. The switching temperature for the transition from transverse to vortex walls in ring elements is found to increase with ring width, an effect attributed to structural changes and consequent changes in magnetic anisotropy, which start to occur in the narrower elements at lower temperatures.Comment: 4 pages, 4 figure

    Advanced Medical Image Registration Methods for Quantitative Imaging and Multi-Channel Images

    Get PDF
    This thesis proposes advanced medical image registration methods for applications that can be grouped in two broad themes. The first theme focuses on registration techniques increasing the reliability of _quantitative measurements_ extracted from sets of medical images. The second theme that is considered in this thesis is the registration of _multi-channel_ images
    • …
    corecore