7,452 research outputs found

    Does China Still Have A Labor Cost Advantage?

    Get PDF
    In recent years wages in China have been rising and the yuan has appreciated, potentially eroding China’s cost advantage in manufactures. This paper explores the evolution of China’s relative unit labor costs in manufacturing over 1998-2009. Between 1998 and 2003 China’s unit labor costs fell, but since 2003 they have increased both absolutely and relative to US unit labor costs. Much of the rise in China’s relative unit labor costs can be traced to a real appreciation of the yuan against the dollar. Despite the recent rise, China’s unit labor costs remain low relative to those in most other countries

    Green-Function-Based Monte Carlo Method for Classical Fields Coupled to Fermions

    Full text link
    Microscopic models of classical degrees of freedom coupled to non-interacting fermions occur in many different contexts. Prominent examples from solid state physics are descriptions of colossal magnetoresistance manganites and diluted magnetic semiconductors, or auxiliary field methods for correlated electron systems. Monte Carlo simulations are vital for an understanding of such systems, but notorious for requiring the solution of the fermion problem with each change in the classical field configuration. We present an efficient, truncation-free O(N) method on the basis of Chebyshev expanded local Green functions, which allows us to simulate systems of unprecedented size N.Comment: 4 pages, 3 figure

    Test-engine and inlet performance of an aircraft used for investigating flight effects on fan noise

    Get PDF
    As part of the NASA Flight Effects on Fan Noise Program, a Grumman OV-1B Mohawk aircraft was modified to carry a modified and instrumented Pratt & Whitney JT15D-1 turbofan engine. Onboard flight data, together with simultaneously measured farfield acoustic data, comprise a flight data base to which JT15D-1 static and wind-tunnel data are compared. The overall objective is to improve the ability to use ground-based facilities for the prediction of flight inlet radiated noise. This report describes the hardware and presents performance results for the research engine

    Approximation of the scattering amplitude

    Get PDF
    The simultaneous solution of Ax=b and ATy=g is required in a number of situations. Darmofal and Lu have proposed a method based on the Quasi-Minimal residual algorithm (QMR). We will introduce a technique for the same purpose based on the LSQR method and show how its performance can be improved when using the Generalized LSQR method. We further show how preconditioners can be introduced to enhance the speed of convergence and discuss different preconditioners that can be used. The scattering amplitude gTx, a widely used quantity in signal processing for example, has a close connection to the above problem since x represents the solution of the forward problem and g is the right hand side of the adjoint system. We show how this quantity can be efficiently approximated using Gauss quadrature and introduce a Block-Lanczos process that approximates the scattering amplitude and which can also be used with preconditioners

    Quaternion Singular Value Decomposition based on Bidiagonalization to a Real Matrix using Quaternion Householder Transformations

    Full text link
    We present a practical and efficient means to compute the singular value decomposition (svd) of a quaternion matrix A based on bidiagonalization of A to a real bidiagonal matrix B using quaternionic Householder transformations. Computation of the svd of B using an existing subroutine library such as lapack provides the singular values of A. The singular vectors of A are obtained trivially from the product of the Householder transformations and the real singular vectors of B. We show in the paper that left and right quaternionic Householder transformations are different because of the noncommutative multiplication of quaternions and we present formulae for computing the Householder vector and matrix in each case

    Parallel density matrix propagation in spin dynamics simulations

    Full text link
    Several methods for density matrix propagation in distributed computing environments, such as clusters and graphics processing units, are proposed and evaluated. It is demonstrated that the large communication overhead associated with each propagation step (two-sided multiplication of the density matrix by an exponential propagator and its conjugate) may be avoided and the simulation recast in a form that requires virtually no inter-thread communication. Good scaling is demonstrated on a 128-core (16 nodes, 8 cores each) cluster.Comment: Submitted for publicatio

    Gravitationally enhanced depolarization of ultracold neutrons in magnetic-field gradients

    Get PDF
    Trapped ultracold neutrons (UCN) have for many years been the mainstay of experiments to search for the electric dipole moment (EDM) of the neutron, a critical parameter in constraining scenarios of new physics beyond the Standard Model. Because their energies are so low, UCN preferentially populate the lower region of their physical enclosure, and do not sample uniformly the ambient magnetic field throughout the storage volume. This leads to a substantial increase in the rate of depolarization, as well as to shifts in the measured frequency of the stored neutrons. Consequences for EDM measurements are discussed

    Accounting in an inflationary economy

    Get PDF

    Fluctuation-induced interactions between dielectrics in general geometries

    Full text link
    We study thermal Casimir and quantum non-retarded Lifshitz interactions between dielectrics in general geometries. We map the calculation of the classical partition function onto a determinant which we discretize and evaluate with the help of Cholesky factorization. The quantum partition function is treated by path integral quantization of a set of interacting dipoles and reduces to a product of determinants. We compare the approximations of pairwise additivity and proximity force with our numerical methods. We propose a ``factorization approximation'' which gives rather good numerical results in the geometries that we study
    • …
    corecore