306 research outputs found

    Conjugatable water-soluble Pt(ii) and Pd(ii) porphyrin complexes: Novel nano- and molecular probes for optical oxygen tension measurement in tissue engineering

    Get PDF
    Measurement of oxygen tension in compressed collagen sheets was performed using matrix-embedded optical oxygen sensors based on platinum(II) and palladium(II) porphyrins supported on polyacrylamide nanoparticles. Bespoke, fully water-soluble, mono-functionalised Pt(II) and Pd(II) porphyrin complexes designed for conjugation under mild conditions were obtained using microwave-assisted metallation. The new sensors display a linear response (1/τ vs. O₂) to varying oxygen tension over a biologically relevant range (7.0 × 10⁻⁴ to 2.7 × 10⁻¹ mM) in aqueous solutions; a behaviour that is maintained following conjugation to polyacrylamide nanoparticles, and following embedding of the nanosensors in compressed collagen sheets, paving the way to innovative approaches for real-time resolution of oxygen gradients throughout 3D matrices useful for tissue regeneration

    Mechanisms of growth inhibition of primary prostate epithelial cells following gamma irradiation or photodynamic therapy including senscence, necrosis, and autophagy, but not apoptosis

    Get PDF
    In comparison to more differentiated cells, prostate cancer stem-like cells are radioresistant, which could explain radio-recurrent prostate cancer. Improvement of radiotherapeutic efficacy may therefore require combination therapy. We have investigated the consequences of treating primary prostate epithelial cells with gamma irradiation and photodynamic therapy (PDT), both of which act through production of reactive oxygen species (ROS). Primary prostate epithelial cells were cultured from patient samples of benign prostatic hyperplasia and prostate cancer prior to treatment with PDT or gamma irradiation. Cell viability was measured using MTT and alamar blue assay, and cell recovery by colony-forming assays. Immunofluorescence of gamma-H2AX foci was used to quantify DNA damage, and autophagy and apoptosis were assessed using Western blots. Necrosis and senescence were measured by propidium iodide staining and beta-galactosidase staining, respectively. Both PDT and gamma irradiation reduced the colony-forming ability of primary prostate epithelial cells. PDT reduced the viability of all types of cells in the cultures, including stem-like cells and more differentiated cells. PDT induced necrosis and autophagy, whereas gamma irradiation induced senescence, but neither treatment induced apoptosis. PDT and gamma irradiation therefore inhibit cell growth by different mechanisms. We suggest these treatments would be suitable for use in combination as sequential treatments against prostate cancer

    A quantum-inspired version of the nearest mean classifier

    Get PDF
    We introduce a framework suitable for describing standard classification problems using the mathematical language of quantum states. In particular, we provide a one-to-one correspondence between real objects and pure density operators. This correspondence enables us: (1) to represent the nearest mean classifier (NMC) in terms of quantum objects, (2) to introduce a quantum-inspired version of the NMC called quantum classifier (QC). By comparing the QC with the NMC on different datasets, we show how the first classifier is able to provide additional information that can be beneficial on a classical computer with respect to the second classifier

    Native NIR-emitting single colour centres in CVD diamond

    Get PDF
    Single-photon sources are a fundamental element for developing quantum technologies, and sources based on colour centres in diamonds are among the most promising candidates. The well-known NV centres are characterized by several limitations, thus few other defects have recently been considered. In the present work, we characterize in detail native efficient single colour centres emitting in the near infra-red in both standard IIa single-crystal and electronic-grade polycrystalline commercial CVD diamond samples. In the former case, a high-temperature annealing process in vacuum is necessary to induce the formation/activation of luminescent centres with good emission properties, while in the latter case the annealing process has marginal beneficial effects on the number and performances of native centres in commercially available samples. Although displaying significant variability in several photo physical properties (emission wavelength, emission rate instabilities, saturation behaviours), these centres generally display appealing photophysical properties for applications as single photon sources: short lifetimes, high emission rates and strongly polarized light. The native centres are tentatively attributed to impurities incorporated in the diamond crystal during the CVD growth of high-quality type IIa samples, and offer promising perspectives in diamond-based photonics.Comment: 27 pages, 10 figures. Submitted to "New Journal of Phsyics", NJP-100003.R

    A quantum logical and geometrical approach to the study of improper mixtures

    Get PDF
    We study improper mixtures from a quantum logical and geometrical point of view. Taking into account the fact that improper mixtures do not admit an ignorance interpretation and must be considered as states in their own right, we do not follow the standard approach which considers improper mixtures as measures over the algebra of projections. Instead of it, we use the convex set of states in order to construct a new lattice whose atoms are all physical states: pure states and improper mixtures. This is done in order to overcome one of the problems which appear in the standard quantum logical formalism, namely, that for a subsystem of a larger system in an entangled state, the conjunction of all actual properties of the subsystem does not yield its actual state. In fact, its state is an improper mixture and cannot be represented in the von Neumann lattice as a minimal property which determines all other properties as is the case for pure states or classical systems. The new lattice also contains all propositions of the von Neumann lattice. We argue that this extension expresses in an algebraic form the fact that -alike the classical case- quantum interactions produce non trivial correlations between the systems. Finally, we study the maps which can be defined between the extended lattice of a compound system and the lattices of its subsystems.Comment: submitted to the Journal of Mathematical Physic

    Exploiting the interplay between cross-sectional and longitudinal data in Class III malocclusion patients

    Get PDF
    The aim of the study was to investigate how to improve the forecasting of craniofacial unbalance risk during growth among patients affected by Class III malocclusion. To this purpose we used computational methodologies such as Transductive Learning (TL), Boosting (B), and Feature Engineering (FE) instead of the traditional statistical analysis based on Classification trees and logistic models. Such techniques have been applied to cephalometric data from 728 cross-sectional untreated Class III subjects (6–14 years of age) and from 91 untreated Class III subjects followed longitudinally during the growth process. A cephalometric analysis comprising 11 variables has also been performed. The subjects followed longitudinally were divided into two subgroups: favourable and unfavourable growth, in comparison with normal craniofacial growth. With respect to traditional statistical predictive analytics, TL increased the accuracy in identifying subjects at risk of unfavourable growth. TL algorithm was useful in diffusion of information from longitudinal to cross-sectional subjects. The accuracy in identifying high-risk subjects to growth worsening increased from 63% to 78%. Finally, a further increase in identification accuracy, up to 83%, was produced by FE. A ranking of important variables in identifying subjects at risk of growth worsening, therefore, has been obtained

    A representation theorem for MV-algebras

    Full text link
    An {\em MV-pair} is a pair (B,G)(B,G) where BB is a Boolean algebra and GG is a subgroup of the automorphism group of BB satisfying certain conditions. Let G\sim_G be the equivalence relation on BB naturally associated with GG. We prove that for every MV-pair (B,G)(B,G), the effect algebra B/GB/\sim_G is an MV- effect algebra. Moreover, for every MV-effect algebra MM there is an MV-pair (B,G)(B,G) such that MM is isomorphic to B/GB/\sim_G
    corecore