research

A representation theorem for MV-algebras

Abstract

An {\em MV-pair} is a pair (B,G)(B,G) where BB is a Boolean algebra and GG is a subgroup of the automorphism group of BB satisfying certain conditions. Let G\sim_G be the equivalence relation on BB naturally associated with GG. We prove that for every MV-pair (B,G)(B,G), the effect algebra B/GB/\sim_G is an MV- effect algebra. Moreover, for every MV-effect algebra MM there is an MV-pair (B,G)(B,G) such that MM is isomorphic to B/GB/\sim_G

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019