229 research outputs found
Combinatorics and formal geometry of the master equation
We give a general treatment of the master equation in homotopy algebras and
describe the operads and formal differential geometric objects governing the
corresponding algebraic structures. We show that the notion of Maurer-Cartan
twisting is encoded in certain automorphisms of these universal objects
Relations Among Universal Equations For Gromov-Witten Invariants
In this paper, we study relations among known universal equations for
Gromov-Witten invariants at genus 1 and 2.Comment: LaTex file, 13 page
Matrix De Rham complex and quantum A-infinity algebras
I establish the relation of the non-commutative BV-formalism with
super-invariant matrix integration. In particular, the non-commutative
BV-equation, defining the quantum A-infinity-algebras, introduced in "Modular
operads and Batalin-Vilkovisky geometry" IMRN, Vol. 2007, doi:
10.1093/imrn/rnm075, is represented via de Rham differential acting on the
matrix spaces related with Bernstein-Leites simple associative algebras with
odd trace q(N), and with gl(N|N). I also show that the Lagrangians of the
matrix integrals from "Noncommmutative Batalin-Vilkovisky geometry and Matrix
integrals", Comptes Rendus Mathematique, vol 348 (2010), pp. 359-362,
arXiv:0912.5484, are equivariantly closed differential forms.Comment: published versio
Open-closed homotopy algebra in mathematical physics
In this paper we discuss various aspects of open-closed homotopy algebras
(OCHAs) presented in our previous paper, inspired by Zwiebach's open-closed
string field theory, but that first paper concentrated on the mathematical
aspects. Here we show how an OCHA is obtained by extracting the tree part of
Zwiebach's quantum open-closed string field theory. We clarify the explicit
relation of an OCHA with Kontsevich's deformation quantization and with the
B-models of homological mirror symmetry. An explicit form of the minimal model
for an OCHA is given as well as its relation to the perturbative expansion of
open-closed string field theory. We show that our open-closed homotopy algebra
gives us a general scheme for deformation of open string structures
(-algebras) by closed strings (-algebras).Comment: 38 pages, 4 figures; v2: published versio
Noncommutative geometry and lower dimensional volumes in Riemannian geometry
In this paper we explain how to define "lower dimensional'' volumes of any
compact Riemannian manifold as the integrals of local Riemannian invariants.
For instance we give sense to the area and the length of such a manifold in any
dimension. Our reasoning is motivated by an idea of Connes and involves in an
essential way noncommutative geometry and the analysis of Dirac operators on
spin manifolds. However, the ultimate definitions of the lower dimensional
volumes don't involve noncommutative geometry or spin structures at all.Comment: 12 page
Manin products, Koszul duality, Loday algebras and Deligne conjecture
In this article we give a conceptual definition of Manin products in any
category endowed with two coherent monoidal products. This construction can be
applied to associative algebras, non-symmetric operads, operads, colored
operads, and properads presented by generators and relations. These two
products, called black and white, are dual to each other under Koszul duality
functor. We study their properties and compute several examples of black and
white products for operads. These products allow us to define natural
operations on the chain complex defining cohomology theories. With these
operations, we are able to prove that Deligne's conjecture holds for a general
class of operads and is not specific to the case of associative algebras.
Finally, we prove generalized versions of a few conjectures raised by M. Aguiar
and J.-L. Loday related to the Koszul property of operads defined by black
products. These operads provide infinitely many examples for this generalized
Deligne's conjecture.Comment: Final version, a few references adde
On unbounded p-summable Fredholm modules
We prove that odd unbounded p-summable Fredholm modules are also bounded
p-summable Fredholm modules (this is the odd counterpart of a result of A.
Connes for the case of even Fredholm modules)
Poisson-Jacobi reduction of homogeneous tensors
The notion of homogeneous tensors is discussed. We show that there is a
one-to-one correspondence between multivector fields on a manifold ,
homogeneous with respect to a vector field on , and first-order
polydifferential operators on a closed submanifold of codimension 1 such
that is transversal to . This correspondence relates the
Schouten-Nijenhuis bracket of multivector fields on to the Schouten-Jacobi
bracket of first-order polydifferential operators on and generalizes the
Poissonization of Jacobi manifolds. Actually, it can be viewed as a
super-Poissonization. This procedure of passing from a homogeneous multivector
field to a first-order polydifferential operator can be also understood as a
sort of reduction; in the standard case -- a half of a Poisson reduction. A
dual version of the above correspondence yields in particular the
correspondence between -homogeneous symplectic structures on and
contact structures on .Comment: 19 pages, minor corrections, final version to appear in J. Phys. A:
Math. Ge
Jacobi structures revisited
Jacobi algebroids, that is graded Lie brackets on the Grassmann algebra
associated with a vector bundle which satisfy a property similar to that of the
Jacobi brackets, are introduced. They turn out to be equivalent to generalized
Lie algebroids in the sense of Iglesias and Marrero and can be viewed also as
odd Jacobi brackets on the supermanifolds associated with the vector bundles.
Jacobi bialgebroids are defined in the same manner. A lifting procedure of
elements of this Grassmann algebra to multivector fields on the total space of
the vector bundle which preserves the corresponding brackets is developed. This
gives the possibility of associating canonically a Lie algebroid with any local
Lie algebra in the sense of Kirillov.Comment: 20 page
- …