229 research outputs found

    Combinatorics and formal geometry of the master equation

    Get PDF
    We give a general treatment of the master equation in homotopy algebras and describe the operads and formal differential geometric objects governing the corresponding algebraic structures. We show that the notion of Maurer-Cartan twisting is encoded in certain automorphisms of these universal objects

    Ownership and control of fresh water in common law cultures

    Get PDF

    Relations Among Universal Equations For Gromov-Witten Invariants

    Full text link
    In this paper, we study relations among known universal equations for Gromov-Witten invariants at genus 1 and 2.Comment: LaTex file, 13 page

    Matrix De Rham complex and quantum A-infinity algebras

    Full text link
    I establish the relation of the non-commutative BV-formalism with super-invariant matrix integration. In particular, the non-commutative BV-equation, defining the quantum A-infinity-algebras, introduced in "Modular operads and Batalin-Vilkovisky geometry" IMRN, Vol. 2007, doi: 10.1093/imrn/rnm075, is represented via de Rham differential acting on the matrix spaces related with Bernstein-Leites simple associative algebras with odd trace q(N), and with gl(N|N). I also show that the Lagrangians of the matrix integrals from "Noncommmutative Batalin-Vilkovisky geometry and Matrix integrals", Comptes Rendus Mathematique, vol 348 (2010), pp. 359-362, arXiv:0912.5484, are equivariantly closed differential forms.Comment: published versio

    Open-closed homotopy algebra in mathematical physics

    Get PDF
    In this paper we discuss various aspects of open-closed homotopy algebras (OCHAs) presented in our previous paper, inspired by Zwiebach's open-closed string field theory, but that first paper concentrated on the mathematical aspects. Here we show how an OCHA is obtained by extracting the tree part of Zwiebach's quantum open-closed string field theory. We clarify the explicit relation of an OCHA with Kontsevich's deformation quantization and with the B-models of homological mirror symmetry. An explicit form of the minimal model for an OCHA is given as well as its relation to the perturbative expansion of open-closed string field theory. We show that our open-closed homotopy algebra gives us a general scheme for deformation of open string structures (AA_\infty-algebras) by closed strings (LL_\infty-algebras).Comment: 38 pages, 4 figures; v2: published versio

    Noncommutative geometry and lower dimensional volumes in Riemannian geometry

    Full text link
    In this paper we explain how to define "lower dimensional'' volumes of any compact Riemannian manifold as the integrals of local Riemannian invariants. For instance we give sense to the area and the length of such a manifold in any dimension. Our reasoning is motivated by an idea of Connes and involves in an essential way noncommutative geometry and the analysis of Dirac operators on spin manifolds. However, the ultimate definitions of the lower dimensional volumes don't involve noncommutative geometry or spin structures at all.Comment: 12 page

    Manin products, Koszul duality, Loday algebras and Deligne conjecture

    Full text link
    In this article we give a conceptual definition of Manin products in any category endowed with two coherent monoidal products. This construction can be applied to associative algebras, non-symmetric operads, operads, colored operads, and properads presented by generators and relations. These two products, called black and white, are dual to each other under Koszul duality functor. We study their properties and compute several examples of black and white products for operads. These products allow us to define natural operations on the chain complex defining cohomology theories. With these operations, we are able to prove that Deligne's conjecture holds for a general class of operads and is not specific to the case of associative algebras. Finally, we prove generalized versions of a few conjectures raised by M. Aguiar and J.-L. Loday related to the Koszul property of operads defined by black products. These operads provide infinitely many examples for this generalized Deligne's conjecture.Comment: Final version, a few references adde

    On unbounded p-summable Fredholm modules

    Get PDF
    We prove that odd unbounded p-summable Fredholm modules are also bounded p-summable Fredholm modules (this is the odd counterpart of a result of A. Connes for the case of even Fredholm modules)

    Poisson-Jacobi reduction of homogeneous tensors

    Full text link
    The notion of homogeneous tensors is discussed. We show that there is a one-to-one correspondence between multivector fields on a manifold MM, homogeneous with respect to a vector field Δ\Delta on MM, and first-order polydifferential operators on a closed submanifold NN of codimension 1 such that Δ\Delta is transversal to NN. This correspondence relates the Schouten-Nijenhuis bracket of multivector fields on MM to the Schouten-Jacobi bracket of first-order polydifferential operators on NN and generalizes the Poissonization of Jacobi manifolds. Actually, it can be viewed as a super-Poissonization. This procedure of passing from a homogeneous multivector field to a first-order polydifferential operator can be also understood as a sort of reduction; in the standard case -- a half of a Poisson reduction. A dual version of the above correspondence yields in particular the correspondence between Δ\Delta-homogeneous symplectic structures on MM and contact structures on NN.Comment: 19 pages, minor corrections, final version to appear in J. Phys. A: Math. Ge

    Jacobi structures revisited

    Full text link
    Jacobi algebroids, that is graded Lie brackets on the Grassmann algebra associated with a vector bundle which satisfy a property similar to that of the Jacobi brackets, are introduced. They turn out to be equivalent to generalized Lie algebroids in the sense of Iglesias and Marrero and can be viewed also as odd Jacobi brackets on the supermanifolds associated with the vector bundles. Jacobi bialgebroids are defined in the same manner. A lifting procedure of elements of this Grassmann algebra to multivector fields on the total space of the vector bundle which preserves the corresponding brackets is developed. This gives the possibility of associating canonically a Lie algebroid with any local Lie algebra in the sense of Kirillov.Comment: 20 page
    corecore