555 research outputs found
Factores de riesgo y consecuencias de las caídas en los residentes de un Centro Geriátrico Asistido.
Estudio Realizado sobre el fenómeno de las caídas con una muestro de 79 ancianos de un Centro Geriátrico Asistido para valorar la incidencia de determinados factores de riesgo intrínsecos y extrínsecos, así como sus consecuencias físicas y psíquicas (síndrome post-caída), evolución y tratamiento. El 80% de los ancianos sufrieron alguna caída. Las pruebas estadísticas realizadas mostraron que los ancianos que consumen benzodiacepinas e hipnóticos presentan mayor número de caídas que los que no consumen dichos fármacos, y lo mismo ocurre con el hecho de padecer demencia. La ocurrencia de las caídas también se estudió, mostrando los resultados una incidencia significativa del consumo de benzodiacepinas e hipnóticos (U=1119, p<0.001) y de neurolépticos (U=870, p<0.001). También inciden la demencia (U=937, p<0.0031 y Ios accidentes cerebro vasculares (U=347, p<0.007). El 15% de las caídas se debieron a enfermedades interrecurrentes o agudas, y un 5.1% terminaron en fractura. El 18.99% de los ancianos que sufrieron caídas mostraron el síndrome post-caída de modo objetivable
Proposal of a new erythemal UV radiation amplification factor
International audienceThis work is aimed to propose a natural expansion of radiation amplification factor (RAF) for erythemal irradiance to consider all solar zenith angles cases together. In this direction, the article analyzes the relationship between measurements of UV erythemal radiation (UVER) recorded at Badajoz (Spain) and the total ozone column estimated by the instrument TOMS/NASA for that location during the period February 2001?December 2005. The new RAF parameter is formulated by power equation using slant ozone and UVER atmospheric transmissivity values. Thus, reliable values of this parameter have been reported. These values could serve as a new relevant index for comparison with other studies and model's result. The new RAF is calculated with measurements recorded during completely clear cases using clearness index values higher than 0.75. The RAF value was 1.35±0.01, it is to say, when the slant ozone amount decreases 1% at Badajoz, UVER atmospheric transmissivity values and, therefore, UVER surface values approximately increase 1.35%. This result emphasizes the interest of measuring and monitoring simultaneous measurements of UV radiation and stratospheric ozone even for mid-latitudes. The influence of total ozone amount and cloudiness changes on new RAF values is analyzed. Cloud-free conditions allow to study the ozone influences while cloud effects are analyzed with all data by means of monthly average of slant ozone and UVER atmospheric transmissivities values
Passivity Breakdown of Titanium in LiBr solutions
The passive behavior of titanium and its susceptibility to undergo localized attack in different LiBr solutions at 25 degrees C have been investigated using different electrochemical techniques: potentiodynamic polarization curves, potentiostatic passivation tests, EIS measurements and Mott-Schottky analysis. In low and moderately concentrated LiBr solutions, the breakdown potential E-b decreased with increasing bromide concentrations, while in highly concentrated LiBr solutions, E-b increased with increasing LiBr concentration. In the most concentrated LiBr solution (11.42M) Ti did not undergo passivity breakdown even at 9 V-Ag/AgCl. This observation can be explained by a a decrease in the activity of water in highly concentrated LiBr solutions. (C) 2013 The Electrochemical Society.We wish express our gratitude to the Ministerio de Ciencia e Innovacion (Project CTQ2009-07518), and to Dr. M. Asuncion Jaime. for her translation assistance.Fernández Domene, RM.; Blasco-Tamarit, E.; García-García, D.; García Antón, J. (2014). Passivity Breakdown of Titanium in LiBr solutions. Journal of The Electrochemical Society. 161(1):25-35. https://doi.org/10.1149/2.035401jesS25351611Been J. Grauman J. S. , in: Uhlig's Corrosion Handbook, 2nd ed., Winston Revie R. (ed.), 863-885, Wiley Interscience, New York (2000).Blasco-Tamarit, E., Igual-Muñoz, A., García Antón, J., & García-García, D. (2007). Corrosion behaviour and galvanic coupling of titanium and welded titanium in LiBr solutions. Corrosion Science, 49(3), 1000-1026. doi:10.1016/j.corsci.2006.07.007Huang, Y. Z., & Blackwood, D. J. (2005). Characterisation of titanium oxide film grown in 0.9% NaCl at different sweep rates. Electrochimica Acta, 51(6), 1099-1107. doi:10.1016/j.electacta.2005.05.051Pan, J., Thierry, D., & Leygraf, C. (1996). Electrochemical impedance spectroscopy study of the passive oxide film on titanium for implant application. Electrochimica Acta, 41(7-8), 1143-1153. doi:10.1016/0013-4686(95)00465-3Assis, S. L. de, Wolynec, S., & Costa, I. (2006). Corrosion characterization of titanium alloys by electrochemical techniques. Electrochimica Acta, 51(8-9), 1815-1819. doi:10.1016/j.electacta.2005.02.121Birch, J. R., & Burleigh, T. D. (2000). Oxides Formed on Titanium by Polishing, Etching, Anodizing, or Thermal Oxidizing. CORROSION, 56(12), 1233-1241. doi:10.5006/1.3280511Peláez-Abellán, E., Rocha-Sousa, L., Müller, W.-D., & Guastaldi, A. C. (2007). Electrochemical stability of anodic titanium oxide films grown at potentials higher than 3V in a simulated physiological solution. Corrosion Science, 49(3), 1645-1655. doi:10.1016/j.corsci.2006.08.010Azumi, K., & Seo, M. (2001). Changes in electrochemical properties of the anodic oxide film formed on titanium during potential sweep. Corrosion Science, 43(3), 533-546. doi:10.1016/s0010-938x(00)00105-0Alves, V. A., Reis, R. Q., Santos, I. C. B., Souza, D. G., de F. Gonçalves, T., Pereira-da-Silva, M. A., … da Silva, L. A. (2009). In situ impedance spectroscopy study of the electrochemical corrosion of Ti and Ti–6Al–4V in simulated body fluid at 25°C and 37°C. Corrosion Science, 51(10), 2473-2482. doi:10.1016/j.corsci.2009.06.035Schmidt, A. M., Azambuja, D. S., & Martini, E. M. A. (2006). Semiconductive properties of titanium anodic oxide films in McIlvaine buffer solution. Corrosion Science, 48(10), 2901-2912. doi:10.1016/j.corsci.2005.10.013Sellers, M. C. K., & Seebauer, E. G. (2011). Measurement method for carrier concentration in TiO2 via the Mott–Schottky approach. Thin Solid Films, 519(7), 2103-2110. doi:10.1016/j.tsf.2010.10.071Jiang, Z., Dai, X., & Middleton, H. (2011). Investigation on passivity of titanium under steady-state conditions in acidic solutions. Materials Chemistry and Physics, 126(3), 859-865. doi:10.1016/j.matchemphys.2010.12.028Kong, D.-S., Lu, W.-H., Feng, Y.-Y., Yu, Z.-Y., Wu, J.-X., Fan, W.-J., & Liu, H.-Y. (2009). Studying on the Point-Defect-Conductive Property of the Semiconducting Anodic Oxide Films on Titanium. Journal of The Electrochemical Society, 156(1), C39. doi:10.1149/1.3021008Roh, B., & Macdonald, D. D. (2007). Effect of oxygen vacancies in anodic titanium oxide films on the kinetics of the oxygen electrode reaction. Russian Journal of Electrochemistry, 43(2), 125-135. doi:10.1134/s1023193507020012Sazou, D., Saltidou, K., & Pagitsas, M. (2012). Understanding the effect of bromides on the stability of titanium oxide films based on a point defect model. Electrochimica Acta, 76, 48-61. doi:10.1016/j.electacta.2012.04.158Roberge P. R. , Handbook of Corrosion Engineering, p. 756, McGraw-Hill, New York (2000).Basame, S. B., & White, H. S. (1995). Scanning electrochemical microscopy of native titanium oxide films. Mapping the potential dependence of spatially-localized electrochemical reactions. The Journal of Physical Chemistry, 99(44), 16430-16435. doi:10.1021/j100044a034Basame, S. B., & White, H. S. (2000). Pitting Corrosion of Titanium The Relationship Between Pitting Potential and Competitive Anion Adsorption at the Oxide Film/Electrolyte Interface. Journal of The Electrochemical Society, 147(4), 1376. doi:10.1149/1.1393364Dugdale, I., & Cotton, J. B. (1964). The anodic polarization of titanium in halide solutions. Corrosion Science, 4(1-4), 397-411. doi:10.1016/0010-938x(64)90041-1Virtanen, S., & Curty, C. (2004). Metastable and Stable Pitting Corrosion of Titanium in Halide Solutions. CORROSION, 60(7), 643-649. doi:10.5006/1.3287839Trompette, J. L., Massot, L., Arurault, L., & Fontorbes, S. (2011). Influence of the anion specificity on the anodic polarization of titanium. Corrosion Science, 53(4), 1262-1268. doi:10.1016/j.corsci.2010.12.021Casillas, N. (1994). Pitting Corrosion of Titanium. Journal of The Electrochemical Society, 141(3), 636. doi:10.1149/1.2054783Beck, T. R. (1973). Pitting of Titanium. Journal of The Electrochemical Society, 120(10), 1310. doi:10.1149/1.2403253Huo, S., & Meng, X. (1990). The states of bromide on titanium surface prior to pit initiation. Corrosion Science, 31, 281-286. doi:10.1016/0010-938x(90)90120-tFernández-Domene, R. M., Blasco-Tamarit, E., García-García, D. M., & García-Antón, J. (2011). Cavitation corrosion and repassivation kinetics of titanium in a heavy brine LiBr solution evaluated by using electrochemical techniques and Confocal Laser Scanning Microscopy. Electrochimica Acta, 58, 264-275. doi:10.1016/j.electacta.2011.09.034Srikhirin, P., Aphornratana, S., & Chungpaibulpatana, S. (2001). A review of absorption refrigeration technologies. Renewable and Sustainable Energy Reviews, 5(4), 343-372. doi:10.1016/s1364-0321(01)00003-xLee R. J. DiGuilio R. M. Jeter S. M. Teja A. S. , ASHRAE Tran., 96(1), (1990).Guiñon, J. L., Garcia-Anton, J., Pérez-Herranz, V., & Lacoste, G. (1994). Corrosion of Carbon Steels, Stainless Steels, and Titanium in Aqueous Lithium Bromide Solution. CORROSION, 50(3), 240-246. doi:10.5006/1.3293516Florides, G. A., Kalogirou, S. A., Tassou, S. A., & Wrobel, L. C. (2003). Design and construction of a LiBr–water absorption machine. Energy Conversion and Management, 44(15), 2483-2508. doi:10.1016/s0196-8904(03)00006-2Misra, R. D., Sahoo, P. K., & Gupta, A. (2005). Thermoeconomic evaluation and optimization of a double-effect H2O/LiBr vapour-absorption refrigeration system. International Journal of Refrigeration, 28(3), 331-343. doi:10.1016/j.ijrefrig.2004.09.006Hamer, W. J., & Wu, Y. (1972). Osmotic Coefficients and Mean Activity Coefficients of Uni‐univalent Electrolytes in Water at 25°C. Journal of Physical and Chemical Reference Data, 1(4), 1047-1100. doi:10.1063/1.3253108Prausnitz J. M. Lichtenthaler R. N. Azevedo E. G. , Molecular Thermodynamics of Fluid-Phase Equilibria, p. 517, Prentice Hall, Upper Saddle River, NJ (1999).Blandamer, M. J., Engberts, J. B. F. N., Gleeson, P. T., & Reis, J. C. R. (2005). Activity of water in aqueous systems; A frequently neglected property. Chemical Society Reviews, 34(5), 440. doi:10.1039/b400473fSelcuk, H., Sene, J. J., Zanoni, M. V. B., Sarikaya, H. Z., & Anderson, M. A. (2004). Behavior of bromide in the photoelectrocatalytic process and bromine generation using nanoporous titanium dioxide thin-film electrodes. Chemosphere, 54(7), 969-974. doi:10.1016/j.chemosphere.2003.09.016Muñoz, A. I., Antón, J. G., Guiñón, J. L., & Herranz, V. P. (2003). Corrosion Behavior and Galvanic Coupling of Stainless Steels, Titanium, and Alloy 33 in Lithium Bromide Solutions. CORROSION, 59(7), 606-615. doi:10.5006/1.3277591Muñoz-Portero, M. J., García-Antón, J., Guiñón, J. L., & Leiva-García, R. (2011). Pourbaix diagrams for titanium in concentrated aqueous lithium bromide solutions at 25°C. Corrosion Science, 53(4), 1440-1450. doi:10.1016/j.corsci.2011.01.013Davydov, A. . (2001). Breakdown of valve metal passivity induced by aggressive anions. Electrochimica Acta, 46(24-25), 3777-3781. doi:10.1016/s0013-4686(01)00664-8Lin, L. F. (1981). A Point Defect Model for Anodic Passive Films. Journal of The Electrochemical Society, 128(6), 1194. doi:10.1149/1.2127592Haruna, T. (1997). Theoretical Prediction of the Scan Rate Dependencies of the Pitting Potential and the Probability Distribution in the Induction Time. Journal of The Electrochemical Society, 144(5), 1574. doi:10.1149/1.1837643Macdonald, D. D. (1992). The Point Defect Model for the Passive State. Journal of The Electrochemical Society, 139(12), 3434. doi:10.1149/1.2069096Macdonald, D. D. (1999). Passivity–the key to our metals-based civilization. Pure and Applied Chemistry, 71(6), 951-978. doi:10.1351/pac199971060951Macdonald, D. D. (2011). The history of the Point Defect Model for the passive state: A brief review of film growth aspects. Electrochimica Acta, 56(4), 1761-1772. doi:10.1016/j.electacta.2010.11.005Macdonald, D. D., & Sun, A. (2006). An electrochemical impedance spectroscopic study of the passive state on Alloy-22. Electrochimica Acta, 51(8-9), 1767-1779. doi:10.1016/j.electacta.2005.02.103Park, K., Ahn, S., & Kwon, H. (2011). Effects of solution temperature on the kinetic nature of passive film on Ni. Electrochimica Acta, 56(3), 1662-1669. doi:10.1016/j.electacta.2010.09.077Macdonald, D. D. (2008). On the tenuous nature of passivity and its role in the isolation of HLNW. Journal of Nuclear Materials, 379(1-3), 24-32. doi:10.1016/j.jnucmat.2008.06.004Paola, A. D. (1989). Semiconducting properties of passive films on stainless steels. Electrochimica Acta, 34(2), 203-210. doi:10.1016/0013-4686(89)87086-0Gomes, W. P., & Vanmaekelbergh, D. (1996). Impedance spectroscopy at semiconductor electrodes: Review and recent developments. Electrochimica Acta, 41(7-8), 967-973. doi:10.1016/0013-4686(95)00427-0Da Cunha Belo, M., Hakiki, N. ., & Ferreira, M. G. . (1999). Semiconducting properties of passive films formed on nickel–base alloys type Alloy 600: influence of the alloying elements. Electrochimica Acta, 44(14), 2473-2481. doi:10.1016/s0013-4686(98)00372-7Hakiki, N. B., Boudin, S., Rondot, B., & Da Cunha Belo, M. (1995). The electronic structure of passive films formed on stainless steels. Corrosion Science, 37(11), 1809-1822. doi:10.1016/0010-938x(95)00084-wHamadou, L., Kadri, A., & Benbrahim, N. (2005). Characterisation of passive films formed on low carbon steel in borate buffer solution (pH 9.2) by electrochemical impedance spectroscopy. Applied Surface Science, 252(5), 1510-1519. doi:10.1016/j.apsusc.2005.02.135Wijesinghe, T. L. S. L., & Blackwood, D. J. (2008). Photocurrent and capacitance investigations into the nature of the passive films on austenitic stainless steels. Corrosion Science, 50(1), 23-34. doi:10.1016/j.corsci.2007.06.009Amri, J., Souier, T., Malki, B., & Baroux, B. (2008). Effect of the final annealing of cold rolled stainless steels sheets on the electronic properties and pit nucleation resistance of passive films. Corrosion Science, 50(2), 431-435. doi:10.1016/j.corsci.2007.08.013Li, D. G., Wang, J. D., & Chen, D. R. (2012). Influence of potentiostatic aging, temperature and pH on the diffusivity of a point defect in the passive film on Nb in an HCl solution. Electrochimica Acta, 60, 134-146. doi:10.1016/j.electacta.2011.11.024Fernández-Domene, R. M., Blasco-Tamarit, E., García-García, D. M., & García-Antón, J. (2013). Passive and transpassive behaviour of Alloy 31 in a heavy brine LiBr solution. Electrochimica Acta, 95, 1-11. doi:10.1016/j.electacta.2013.02.024Urquidi-Macdonald, M. (1989). Theoretical Analysis of the Effects of Alloying Elements on Distribution Functions of Passivity Breakdown. Journal of The Electrochemical Society, 136(4), 961. doi:10.1149/1.2096894Schmidt, A. M., & Azambuja, D. S. (2006). Electrochemical behavior of Ti and Ti6Al4V in aqueous solutions of citric acid containing halides. Materials Research, 9(4), 387-392. doi:10.1590/s1516-14392006000400008Brug, G. J., van den Eeden, A. L. G., Sluyters-Rehbach, M., & Sluyters, J. H. (1984). The analysis of electrode impedances complicated by the presence of a constant phase element. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 176(1-2), 275-295. doi:10.1016/s0022-0728(84)80324-1Valero Vidal, C., & Igual Muñoz, A. (2010). Study of the adsorption process of bovine serum albumin on passivated surfaces of CoCrMo biomedical alloy. Electrochimica Acta, 55(28), 8445-8452. doi:10.1016/j.electacta.2010.07.028Smart, N. G., & Bockris, J. O. (1992). Effect of Water Activity on Corrosion. CORROSION, 48(4), 277-280. doi:10.5006/1.3315933Frankel, G. S. (1998). Pitting Corrosion of Metals. Journal of The Electrochemical Society, 145(6), 2186. doi:10.1149/1.1838615Blasco-Tamarit, E., Igual-Muñoz, A., & García-Antón, J. (2007). Galvanic corrosion of high alloyed austenitic stainless steel welds in LiBr systems. Corrosion Science, 49(12), 4452-4471. doi:10.1016/j.corsci.2007.05.020Crozier, P. S., & Rowley, R. L. (2002). Activity coefficient prediction by osmotic molecular dynamics. Fluid Phase Equilibria, 193(1-2), 53-73. doi:10.1016/s0378-3812(01)00734-8Burstein, G. T. (1989). The Dissolution and Repassivation of New Titanium Surfaces in Alkaline Methanolic Solution. Journal of The Electrochemical Society, 136(5), 1313. doi:10.1149/1.2096913Banaś, J., Stypuła, B., Banaś, K., Światowska-Mrowiecka, J., Starowicz, M., & Lelek-Borkowska, U. (2008). Corrosion and passivity of metals in methanol solutions of electrolytes. Journal of Solid State Electrochemistry, 13(11), 1669-1679. doi:10.1007/s10008-008-0649-5Beck K. O. , Titanium anodizing process, US Patent 2,949, 411 (1960).Delplancke, J.-L., Degrez, M., Fontana, A., & Winand, R. (1982). Self-colour anodizing of titanium. Surface Technology, 16(2), 153-162. doi:10.1016/0376-4583(82)90033-4Gaul, E. (1993). Coloring titanium and related metals by electrochemical oxidation. Journal of Chemical Education, 70(3), 176. doi:10.1021/ed070p176Sul, Y.-T., Johansson, C. B., Jeong, Y., & Albrektsson, T. (2001). The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes. Medical Engineering & Physics, 23(5), 329-346. doi:10.1016/s1350-4533(01)00050-9Yan, Z. M., Guo, T. W., Pan, H. B., & Yu, J. J. (2002). Influences of Electrolyzing Voltage on Chromatics of Anodized Titanium Dentures. MATERIALS TRANSACTIONS, 43(12), 3142-3145. doi:10.2320/matertrans.43.3142Chen, C., Chen, J., Chao, C., & Say, W. C. (2005). Electrochemical characteristics of surface of titanium formed by electrolytic polishing and anodizing. Journal of Materials Science, 40(15), 4053-4059. doi:10.1007/s10853-005-2802-1Diamanti, M. V., Del Curto, B., & Pedeferri, M. (2008). Interference colors of thin oxide layers on titanium. Color Research & Application, 33(3), 221-228. doi:10.1002/col.20403Karambakhsh, A., Afshar, A., Ghahramani, S., & Malekinejad, P. (2011). Pure Commercial Titanium Color Anodizing and Corrosion Resistance. Journal of Materials Engineering and Performance, 20(9), 1690-1696. doi:10.1007/s11665-011-9860-
Motivos de Aceptación y Rechazo entre iguales: Puntos de vista del emisor y del receptor
Comunicación presentada en el XIV Congreso de Psicología, Infancia y Adolescencia (INFAD, celebrado en Vigo (Galicia, España) del 25 al 28 abril 2007.Hablar de aceptación y rechazo entre iguales es un tema de gran relevancia en nuestro contexto social actual. Este hecho es consecuencia de la importancia que tiene la atracción interpersonal como índice de adaptación socioemocional, ya que la realidad evidencia que una buena aceptación en el grupo de compañeros y compañeras favorece una buena adaptación y bienestar socioemocional, mientras que niveles bajos de aceptación social son factores de riesgo y de problemática en el tema de interacción social. Esta comunicación da a conocer las diferencias entre chicos y chicas de 10 y 11 años en las razones de aceptación y rechazo, según se comporten como electores o receptores. De manera concreta, nuestro estudio se ha centrado en comparar el comportamiento de un mismo género cuando actúa como emisor y cuando actúa como receptor de los motivos de aceptación y rechazo
Passive Behavior and Passivity Breakdown of AISI 304 in LiBr Solutions through Scanning Electrochemical Microscopy
The passive behavior and passivity breakdown of AISI 304 stainless steel in LiBr solutions has been investigated by means of scanning electrochemical microscopy (SECM). The sample generation - tip collection (SG-TC) mode was used to operate the SECM and the tip potential was biased to detect the electroactive species. The evolution of the current at the ultramicroelectrode tip with the applied potential within the passive range was followed at different LiBr concentrations. Results show that the absolute value of the current at the tip increases with the applied potential. Additionally, SECM was also used to detect stable pits formed on the stainless steel surface in a 0.2 M LiBr solution. The results show clear evidence of the presence of high amounts of other reducible species (metal cations) apart from oxygen. Also, the dish-shape morphology of the pits observed using Confocal Laser Scanning Microscopy will be discussed in relation to the kinetics of the reactions observed using SECM. (c) 2014 The Electrochemical Society. All rights reserved.The authors would like to express their gratitude to the Generalitat Valenciana for its help in the SECM acquisition (PPC/2011/013) and in the CLSM acquisition (MY08/ISIRM/S/100) and to Dr. Asuncion Jaime for her translation assistance.Fernández Domene, RM.; Sánchez Tovar, R.; García Antón, J. (2014). Passive Behavior and Passivity Breakdown of AISI 304 in LiBr Solutions through Scanning Electrochemical Microscopy. Journal of The Electrochemical Society. 161(12):565-572. https://doi.org/10.1149/2.1051412jesS56557216112Cobb Harold M. (Ed.), Steel Products Manual: Stainless Steels, Iron & Steel Society, 1999.Schweitzer P. A. , Corrosion Engineering Handbook: Fundamentals of Metallic Corrosion, CRC Press, Boca Ratón, FL., 2007.Hakiki, N. B., Boudin, S., Rondot, B., & Da Cunha Belo, M. (1995). The electronic structure of passive films formed on stainless steels. Corrosion Science, 37(11), 1809-1822. doi:10.1016/0010-938x(95)00084-wWijesinghe, T. L. S. L., & Blackwood, D. J. (2008). Photocurrent and capacitance investigations into the nature of the passive films on austenitic stainless steels. Corrosion Science, 50(1), 23-34. doi:10.1016/j.corsci.2007.06.009Hakiki, N. E. (1998). Semiconducting Properties of Passive Films Formed on Stainless Steels. Journal of The Electrochemical Society, 145(11), 3821. doi:10.1149/1.1838880Olefjord, I. (1985). Surface Composition of Stainless Steels during Anodic Dissolution and Passivation Studied by ESCA. Journal of The Electrochemical Society, 132(12), 2854. doi:10.1149/1.2113683Lothongkum, G., Chaikittisilp, S., & Lothongkum, A. . (2003). XPS investigation of surface films on high Cr-Ni ferritic and austenitic stainless steels. Applied Surface Science, 218(1-4), 203-210. doi:10.1016/s0169-4332(03)00600-7Freire, L., Carmezim, M. J., Ferreira, M. G. S., & Montemor, M. F. (2010). The passive behaviour of AISI 316 in alkaline media and the effect of pH: A combined electrochemical and analytical study. Electrochimica Acta, 55(21), 6174-6181. doi:10.1016/j.electacta.2009.10.026Roberge P. R. , Corrosion Engineering. Principles and Practice, 1st. ed., McGraw-Hill, New York, NY, 2008.Wipf, D. O. (1994). Initiation and study of localized corrosion by scanning electrochemical microscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 93, 251-261. doi:10.1016/0927-7757(94)02872-9Casillas, N. (1994). Pitting Corrosion of Titanium. Journal of The Electrochemical Society, 141(3), 636. doi:10.1149/1.2054783Basame, S. B., & White, H. S. (1995). Scanning electrochemical microscopy of native titanium oxide films. Mapping the potential dependence of spatially-localized electrochemical reactions. The Journal of Physical Chemistry, 99(44), 16430-16435. doi:10.1021/j100044a034Still, J. W. (1997). Breakdown of the Iron Passive Layer by Use of the Scanning Electrochemical Microscope. Journal of The Electrochemical Society, 144(8), 2657. doi:10.1149/1.1837879Zhu, Y. (1997). Scanning Electrochemical Microscopic Observation of a Precursor State to Pitting Corrosion of Stainless Steel. Journal of The Electrochemical Society, 144(3), L43. doi:10.1149/1.1837487Basame, S. B., & White, H. S. (1998). Scanning Electrochemical Microscopy: Measurement of the Current Density at Microscopic Redox-Active Sites on Titanium. The Journal of Physical Chemistry B, 102(49), 9812-9819. doi:10.1021/jp982088xWilliams, D. E. (1998). Elucidation of a Trigger Mechanism for Pitting Corrosion of Stainless Steels Using Submicron Resolution Scanning Electrochemical and Photoelectrochemical Microscopy. Journal of The Electrochemical Society, 145(8), 2664. doi:10.1149/1.1838697Lister, T. E., & Pinhero, P. J. (2002). Scanning Electrochemical Microscopy Study of Corrosion Dynamics on Type 304 Stainless Steel. Electrochemical and Solid-State Letters, 5(11), B33. doi:10.1149/1.1510621Lister, T. E., & Pinhero, P. J. (2003). The effect of localized electric fields on the detection of dissolved sulfur species from Type 304 stainless steel using scanning electrochemical microscopy. Electrochimica Acta, 48(17), 2371-2378. doi:10.1016/s0013-4686(03)00228-7González-Garcı́a, Y., Burstein, G. ., González, S., & Souto, R. . (2004). Imaging metastable pits on austenitic stainless steel in situ at the open-circuit corrosion potential. Electrochemistry Communications, 6(7), 637-642. doi:10.1016/j.elecom.2004.04.018Souto, R. M., González-Garcı́a, Y., & González, S. (2005). In situ monitoring of electroactive species by using the scanning electrochemical microscope. Application to the investigation of degradation processes at defective coated metals. Corrosion Science, 47(12), 3312-3323. doi:10.1016/j.corsci.2005.07.005Völker, E., Inchauspe, C. G., & Calvo, E. J. (2006). Scanning electrochemical microscopy measurement of ferrous ion fluxes during localized corrosion of steel. Electrochemistry Communications, 8(1), 179-183. doi:10.1016/j.elecom.2005.10.003Gabrielli, C., Joiret, S., Keddam, M., Perrot, H., Portail, N., Rousseau, P., & Vivier, V. (2007). A SECM assisted EQCM study of iron pitting. Electrochimica Acta, 52(27), 7706-7714. doi:10.1016/j.electacta.2007.03.008Yin, Y., Niu, L., Lu, M., Guo, W., & Chen, S. (2009). In situ characterization of localized corrosion of stainless steel by scanning electrochemical microscope. Applied Surface Science, 255(22), 9193-9199. doi:10.1016/j.apsusc.2009.07.003Santana, J. J., González-Guzmán, J., Fernández-Mérida, L., González, S., & Souto, R. M. (2010). Visualization of local degradation processes in coated metals by means of scanning electrochemical microscopy in the redox competition mode. Electrochimica Acta, 55(15), 4488-4494. doi:10.1016/j.electacta.2010.02.091González-García, Y., Santana, J. J., González-Guzmán, J., Izquierdo, J., González, S., & Souto, R. M. (2010). Scanning electrochemical microscopy for the investigation of localized degradation processes in coated metals. Progress in Organic Coatings, 69(2), 110-117. doi:10.1016/j.porgcoat.2010.04.006Yuan, Y., Li, L., Wang, C., & Zhu, Y. (2010). Study of the effects of hydrogen on the pitting processes of X70 carbon steel with SECM. Electrochemistry Communications, 12(12), 1804-1807. doi:10.1016/j.elecom.2010.10.031Aouina, N., Balbaud-Célérier, F., Huet, F., Joiret, S., Perrot, H., Rouillard, F., & Vivier, V. (2011). Single pit initiation on 316L austenitic stainless steel using scanning electrochemical microscopy. Electrochimica Acta, 56(24), 8589-8596. doi:10.1016/j.electacta.2011.07.044Bard A. J. Mirkin M. V. (Eds.), Scanning Electrochemical Microscopy, 1st. ed., Marcel Dekker, New York, NJ, 2001.Kaneko, M., & Isaacs, H. . (2000). Pitting of stainless steel in bromide, chloride and bromide/chloride solutions. Corrosion Science, 42(1), 67-78. doi:10.1016/s0010-938x(99)00056-6Frankel, G. S. (1998). Pitting Corrosion of Metals. Journal of The Electrochemical Society, 145(6), 2186. doi:10.1149/1.1838615Kaneko, M., & Isaacs, H. S. (2002). Effects of molybdenum on the pitting of ferritic- and austenitic-stainless steels in bromide and chloride solutions. Corrosion Science, 44(8), 1825-1834. doi:10.1016/s0010-938x(02)00003-3Abd El Meguid, E. A., & Mahmoud, N. A. (2003). Inhibition of Bromide-Pitting Corrosion of Type 904L Stainless Steel. CORROSION, 59(2), 104-111. doi:10.5006/1.3277539Anderko, A., & Young, R. D. (2000). Model for Corrosion of Carbon Steel in Lithium Bromide Absorption Refrigeration Systems. CORROSION, 56(5), 543-555. doi:10.5006/1.3280559Chau, D. S., Wood, B. D., Berman, N. S., & Kim, K. J. (1993). Solubility of oxygen in aqueous lithium bromide using electrochemical technique. International Communications in Heat and Mass Transfer, 20(5), 643-652. doi:10.1016/0735-1933(93)90076-8Macdonald, D. D. (1992). The Point Defect Model for the Passive State. Journal of The Electrochemical Society, 139(12), 3434. doi:10.1149/1.2069096Paola, A. D. (1989). Semiconducting properties of passive films on stainless steels. Electrochimica Acta, 34(2), 203-210. doi:10.1016/0013-4686(89)87086-0Hakiki, N. E., Montemor, M. F., Ferreira, M. G. S., & da Cunha Belo, M. (2000). Semiconducting properties of thermally grown oxide films on AISI 304 stainless steel. Corrosion Science, 42(4), 687-702. doi:10.1016/s0010-938x(99)00082-7Carmezim, M. J., Simões, A. M., Figueiredo, M. O., & Da Cunha Belo, M. (2002). Electrochemical behaviour of thermally treated Cr-oxide films deposited on stainless steel. Corrosion Science, 44(3), 451-465. doi:10.1016/s0010-938x(01)00076-2Sharma S. K. , Green Corrosion Chemistry and Engineering: Opportunities and Challenges, Wiley-VCH Verlag GmbH & Co., First Edition, Germany, 2012.Venkatraman, M. S., Cole, I. S., & Emmanuel, B. (2011). Corrosion under a porous layer: A porous electrode model and its implications for self-repair. Electrochimica Acta, 56(24), 8192-8203. doi:10.1016/j.electacta.2011.06.020Thomas, S., Cole, I. S., Sridhar, M., & Birbilis, N. (2013). Revisiting zinc passivation in alkaline solutions. Electrochimica Acta, 97, 192-201. doi:10.1016/j.electacta.2013.03.008Gao, S., Dong, C., Luo, H., Xiao, K., Pan, X., & Li, X. (2013). Scanning electrochemical microscopy study on the electrochemical behavior of CrN film formed on 304 stainless steel by magnetron sputtering. Electrochimica Acta, 114, 233-241. doi:10.1016/j.electacta.2013.10.009Lu, G., Cooper, J. S., & McGinn, P. J. (2007). SECM imaging of electrocatalytic activity for oxygen reduction reaction on thin film materials. Electrochimica Acta, 52(16), 5172-5181. doi:10.1016/j.electacta.2007.02.022Song C. Zhang J. , Electrocatalytic Oxygen Reduction Reaction, in: J. Zhang (Ed.), PEM Fuel Cell Electrocatalysts and Catalyst Layers, Ch. 2, Springer, London, 2008, p. 89.Macdonald, D. D. (1999). Passivity–the key to our metals-based civilization. Pure and Applied Chemistry, 71(6), 951-978. doi:10.1351/pac199971060951Macdonald, D. D., Rifaie, M. A., & Engelhardt, G. R. (2001). New Rate Laws for the Growth and Reduction of Passive Films. Journal of The Electrochemical Society, 148(9), B343. doi:10.1149/1.1385818Macdonald, D. D. (2006). On the Existence of Our Metals-Based Civilization. Journal of The Electrochemical Society, 153(7), B213. doi:10.1149/1.2195877Marconnet, C., Wouters, Y., Miserque, F., Dagbert, C., Petit, J.-P., Galerie, A., & Féron, D. (2008). Chemical composition and electronic structure of the passive layer formed on stainless steels in a glucose-oxidase solution. Electrochimica Acta, 54(1), 123-132. doi:10.1016/j.electacta.2008.02.070Rhode, S., Kain, V., Raja, V. S., & Abraham, G. J. (2013). Factors affecting corrosion behavior of inclusion containing stainless steels: A scanning electrochemical microscopic study. Materials Characterization, 77, 109-115. doi:10.1016/j.matchar.2013.01.006Newman, R. C., & Franz, E. M. (1984). Growth and Repassivation of Single Corrosion Pits in Stainless Steel. CORROSION, 40(7), 325-330. doi:10.5006/1.3593930Simões, A. M., Bastos, A. C., Ferreira, M. G., González-García, Y., González, S., & Souto, R. M. (2007). Use of SVET and SECM to study the galvanic corrosion of an iron–zinc cell. Corrosion Science, 49(2), 726-739. doi:10.1016/j.corsci.2006.04.021Beck, T. R. (1979). Occurrence of Salt Films during Initiation and Growth of Corrosion Pits. Journal of The Electrochemical Society, 126(10), 1662. doi:10.1149/1.2128772Alkire, R. C., & Wong, K. P. (1988). The corrosion of single pits on stainless steel in acidic chloride solution. Corrosion Science, 28(4), 411-421. doi:10.1016/0010-938x(88)90060-1Bastos, A. C., Simões, A. M., González, S., González-García, Y., & Souto, R. M. (2004). Imaging concentration profiles of redox-active species in open-circuit corrosion processes with the scanning electrochemical microscope. Electrochemistry Communications, 6(11), 1212-1215. doi:10.1016/j.elecom.2004.09.022Böhni H. , Localized Corrosion of Passive Metals, in: Winston Revie R. (Ed.), Uhlig's Corrosion Handbook, 2nd ed., Ch. 10, Wiley Interscience, New York, 2000.Leiva-García, R., García-Antón, J., & Muñoz-Portero, M. J. (2010). Contribution to the elucidation of corrosion initiation through confocal laser scanning microscopy (CLSM). Corrosion Science, 52(6), 2133-2142. doi:10.1016/j.corsci.2010.02.034Laycock, N. J., & Newman, R. C. (1997). Localised dissolution kinetics, salt films and pitting potentials. Corrosion Science, 39(10-11), 1771-1790. doi:10.1016/s0010-938x(97)00049-8Moayed, M. H., & Newman, R. C. (2006). The Relationship Between Pit Chemistry and Pit Geometry Near the Critical Pitting Temperature. Journal of The Electrochemical Society, 153(8), B330. doi:10.1149/1.2210670Ernst, P., & Newman, R. . (2002). Pit growth studies in stainless steel foils. I. Introduction and pit growth kinetics. Corrosion Science, 44(5), 927-941. doi:10.1016/s0010-938x(01)00133-0Ernst, P., Laycock, N. J., Moayed, M. H., & Newman, R. C. (1997). The mechanism of lacy cover formation in pitting. Corrosion Science, 39(6), 1133-1136. doi:10.1016/s0010-938x(97)00043-7Sun, D., Jiang, Y., Tang, Y., Xiang, Q., Zhong, C., Liao, J., & Li, J. (2009). Pitting corrosion behavior of stainless steel in ultrasonic cell. Electrochimica Acta, 54(5), 1558-1563. doi:10.1016/j.electacta.2008.09.056Ren, J., & Zuo, Y. (2005). The growth mechanism of pits in NaCl solution under anodic films on aluminum. Surface and Coatings Technology, 191(2-3), 311-316. doi:10.1016/j.surfcoat.2004.04.05
Improving the solar zenith angle dependence of broadband UV radiometers calibration
International audienceThis paper focusses on the proposal of a new method for the calibration of broadband ultraviolet radiometers. The advantage of the method proposed is the accurate modelling of the dependence on the solar zenith angle. The new model is compared with other one-step calibration methods and with the two-step method, which requires the knowledge of the actual response of the broadband radiometer. For this purpose, three broadband radiometers are calibrated against a spectrophotometer of reference. The new method is validated comparing its predictions with the spectrophotometer measurements using an independent data set
Analysis of a low ozone episode over Extremadura (Spain) in January 2006 and its influence on UV radiation
The main objectives of this work are to analyze, firstly, the detail of the causes of a low ozone event which occurred in January 2006 and, secondly, the related effects of this anomalous episode on ultraviolet (UV) radiation measured at three locations in Extremadura (South-Western Spain). On 19 January 2006, the OMI total ozone column (TOC) was 16&ndash;20% below the January mean value of TOMS/NASA TOC (period 1996&ndash;2005). The back trajectories analysis with the HYSplit model indicates that the notable decrease of TOC could be attributed to a fast rise of the isentropic trajectories height. Concomitantly, UV erythemal radiation greatly increases (between 23% and 37%) on 19 January 2006 respect to UV erythemal radiation measured on 19 January 2005. This notable increase in winter UV solar radiation may involve harmful effects for organisms adapted to receive less radiation during that season (e.g. early developmental stages of terrestrial plants and phytoplankton)
Dynamical and temporal characterization of the total ozone column over Spain
As the ozone is one of the most relevant variables in the climate system, to get further in its long-term characterization is a critical issue. In this study, measurements of total ozone column (TOC) from five well-calibrated Brewer spectrophotometers placed in the Iberian Peninsula are analyzed. The temporal trend rate for TOC is +9.3 DU per decade for the period 1993–2012 in Central Iberian Peninsula. However, the low TOC levels during 2011 and 2012 over the study region notably reduce this rate. Empirical linear relationships are established between TOC and pressure, height, and temperature of the tropopause. The linear fits showed seasonal and latitudinal dependence, with stronger relationships during winter and spring. Events with the presence of a double tropopause (DT) are proved to be characteristic of the study region. The decrease in TOC levels when these anomalous events occur is quantified around 10 % in winter and spring with respect to the usual cases with a single tropopause. The total weight of the DT events with respect to the annual values is about 20 %, with a negligible occurrence in summer and autumn and being latitudinal-dependent. The North Atlantic Oscillation (NAO) index explains 30 % of the total ozone variability in winter. The DT events are found to be more frequent during phases with positive NAO.This work was partially supported the Ministerio de Ciencia e Innovación through project CGL2011-29921-C02-01
- …