62 research outputs found

    Spatial and Temporal Dynamics in the Ionic Driving Force for GABAA Receptors

    Get PDF
    It is becoming increasingly apparent that the strength of GABAergic synaptic transmission is dynamic. One parameter that can establish differences in the actions of GABAergic synapses is the ionic driving force for the chloride-permeable GABAA receptor (GABAAR). Here we review some of the sophisticated ways in which this ionic driving force can vary within neuronal circuits. This driving force for GABAARs is subject to tight spatial control, with the distribution of Cl− transporter proteins and channels generating regional variation in the strength of GABAAR signalling across a single neuron. GABAAR dynamics can result from short-term changes in their driving force, which involve the temporary accumulation or depletion of intracellular Cl−. In addition, activity-dependent changes in the expression and function of Cl− regulating proteins can result in long-term shifts in the driving force for GABAARs. The multifaceted regulation of the ionic driving force for GABAARs has wide ranging implications for mature brain function, neural circuit development, and disease

    Identification and manipulation of tumor associated macrophages in human cancers

    Get PDF
    Evading immune destruction and tumor promoting inflammation are important hallmarks in the development of cancer. Macrophages are present in most human tumors and are often associated with bad prognosis. Tumor associated macrophages come in many functional flavors ranging from what is known as classically activated macrophages (M1) associated with acute inflammation and T-cell immunity to immune suppressive macrophages (M2) associated with the promotion of tumor growth. The role of these functionally different myeloid cells is extensively studied in mice tumor models but dissimilarities in markers and receptors make the direct translation to human cancer difficult. This review focuses on recent reports discriminating the type of infiltrating macrophages in human tumors and the environmental cues present that steer their differentiation. Finally, immunotherapeutic approaches to interfere in this process are discussed

    Insertional mutagenesis identifies multiple networks of cooperating genes driving intestinal tumorigenesis

    Get PDF
    The evolution of colorectal cancer suggests the involvement of many genes. We performed insertional mutagenesis with the Sleeping Beauty (SB) transposon system in mice carrying germline or somatic Apc mutation. Analysis of common insertion sites (CISs) isolated from 446 tumors revealed many hundreds of candidate cancer drivers. Comparison to human datasets suggested that 234 CIS genes are also deregulated in human colorectal cancers. 183 CIS genes are candidate Wnt targets, and 20 are shown to be novel modifiers of canonical Wnt signaling. We also identified gene mutations associated with a subset of tumors containing an expanded number of Paneth cells, a hallmark of deregulated Wnt signaling, and genes associated with more severe dysplasia included members of the FGF signaling cascade. Some 70 genes showed pairwise co-occurrence clustering into 38 sub-networks that may regulate tumor development

    Synchronous BRAFV600E and MEK inhibition leads to superior control of murine melanoma by limiting MEK inhibitor induced skin toxicity

    No full text
    Jules Gadiot,1,* Anna I Hooijkaas,1,* Marcel A Deken,1 Christian U Blank1,21Department of Immunology, 2Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands* These authors contributed equally to this workAbstract: The BRAF inhibitor (BRAFi) treatment has led to impressive responses in BRAFV600E mutation-positive melanomas, but responses are not durable in many patients. As most of the BRAFi escape mechanisms involve ERK reactivation, combinations with MEK inhibitors (MEKi) are currently tested to improve BRAFi-mediated response durations. Additionally, such a combination is expected to reduce MEKi-induced skin toxicities, as these drugs are thought to have antagonistic effects on ERK activation in keratinocytes. However, preclinical in vivo data exploring the combination of BRAFi and MEKi to achieve improved tumor control in the absence of skin toxicities are limited. Using a murine Tyr::CreERT2;PtenLoxP/LoxP;BrafCA/+ melanoma model, we have determined the effect of BRAFi and MEKi treatment and their combination on melanoma control and occurrence of adverse events. We found that the MEKi dosed beyond the maximum tolerable dose (MTD) led to stronger control of tumor growth than did the BRAFi, but mice had to be removed from treatment because of skin toxicity. The combination of BRAFi and MEKi reduced MEKi-associated skin toxicity. This allowed high and long-term dosing of the MEKi, resulting in long-term tumor control. In contrast to previous hypotheses, the addition of a BRAFi did not restore the MEKi-mediated downregulation of pErk1/2 in skin cells. Our data describe, for the first time, the alleviation of MEKi-mediated dose-limiting toxicity by addition of a BRAFi in a mouse melanoma model. Additional clinical Phase I studies should be implemented to explore MEKi dosing beyond the single drug MTD in combination with BRAFi.Keywords: melanoma, BRAF, MEK, skin toxicity, vemurafenib, trametini
    corecore