1,356 research outputs found

    Exploring the Emerging Domain of Research on Video Game Live Streaming in Web of Science: State of the Art, Changes and Trends

    Get PDF
    In recent years, interest in video game live streaming services has increased as a new communication instrument, social network, source of leisure, and entertainment platform for millions of users. The rise in this type of service has been accompanied by an increase in research on these platforms. As an emerging domain of research focused on this novel phenomenon takes shape, it is necessary to delve into its nature and antecedents. The main objective of this research is to provide a comprehensive reference that allows future analyses to be addressed with greater rigor and theoretical depth. In this work, we developed a meta-review of the literature supported by a bibliometric performance and network analysis (BPNA). We used the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) protocol to obtain a representative sample of 111 published documents since 2012 and indexed in the Web of Science. Additionally, we exposed the main research topics developed to date, which allowed us to detect future research challenges and trends. The findings revealed four specializations or subdomains: studies focused on the transmitter or streamer; the receiver or the audience; the channel or platform; and the transmission process. These four specializations add to the accumulated knowledge through the development of six core themes that emerge: motivations, behaviors, monetization of activities, quality of experience, use of social networks and media, and gender issues

    Conformational flexibility of the oncogenic protein LMO2 primes the formation of the multi-protein transcription complex

    Get PDF
    LMO2 was discovered via chromosomal translocations in T-cell leukaemia and shown normally to be essential for haematopoiesis. LMO2 is made up of two LIM only domains (thus it is a LIM-only protein) and forms a bridge in a multi-protein complex. We have studied the mechanism of formation of this complex using a single domain antibody fragment that inhibits LMO2 by sequestering it in a non-functional form. The crystal structure of LMO2 with this antibody fragment has been solved revealing a conformational difference in the positioning and angle between the two LIM domains compared with its normal binding. This contortion occurs by bending at a central helical region of LMO2. This is a unique mechanism for inhibiting an intracellular protein function and the structural contusion implies a model in which newly synthesized, intrinsically disordered LMO2 binds to a partner protein nucleating further interactions and suggests approaches for therapeutic targeting of LMO2

    CAPS-DB: a structural classification of helix-capping motifs

    Get PDF
    The regions of the polypeptide chain immediately preceding or following an α-helix are known as Nt- and Ct cappings, respectively. Cappings play a central role stabilizing α-helices due to lack of intrahelical hydrogen bonds in the first and last turn. Sequence patterns of amino acid type preferences have been derived for cappings but the structural motifs associated to them are still unclassified. CAPS-DB is a database of clusters of structural patterns of different capping types. The clustering algorithm is based in the geometry and the (ϕ–ψ)-space conformation of these regions. CAPS-DB is a relational database that allows the user to search, browse, inspect and retrieve structural data associated to cappings. The contents of CAPS-DB might be of interest to a wide range of scientist covering different areas such as protein design and engineering, structural biology and bioinformatics. The database is accessible at: http://www.bioinsilico.org/CAPSDB

    Biochemical characterisation of a PL24 ulvan lyase from seaweed-associated Vibrio sp. FNV38

    Get PDF
    Ulvan is a green macroalgal cell wall polysaccharide that has tremendous potential for valorisation due to its unique composition of sulphated rhamnose, glucuronic acid, iduronic acid and xylose. Several potential applications such as production of biofuels, bioplastics and other value-added products necessitate the breakdown of the polysaccharide to oligomers or monomers. Research on ulvan saccharifying enzymes has been continually increasing over the last decade, with the increasing focus on valorisation of seaweed biomass for a biobased economy. Lyases are the first of several enzymes that are involved in saccharifying the polysaccharide and several ulvan lyases have been structurally and biochemically characterised to enable their effective use in the valorisation processes. This study investigates the whole genome of Vibrio sp. FNV38, an ulvan metabolising organism and biochemical characteristics of a PL24 ulvan lyase that it possesses. The genome of Vibrio sp. FNV38 has a diverse CAZy profile with several genes involved in the metabolism of ulvan, cellulose, agar, and alginate. The enzyme exhibits optimal activity at pH 8.5 in 100 mM Tris–HCl buffer and 30 °C. However, its thermal stability is poor with significant loss of activity after 2 h of incubation at temperatures above 25 °C. Breakdown product analysis reveals that the enzyme depolymerised the polysaccharide predominantly to disaccharides and tetrasaccharides.</p

    Hot topics, urgent priorities, and ensuring success for racial/ethnic minority young investigators in academic pediatrics.

    Get PDF
    BackgroundThe number of racial/ethnic minority children will exceed the number of white children in the USA by 2018. Although 38% of Americans are minorities, only 12% of pediatricians, 5% of medical-school faculty, and 3% of medical-school professors are minorities. Furthermore, only 5% of all R01 applications for National Institutes of Health grants are from African-American, Latino, and American Indian investigators. Prompted by the persistent lack of diversity in the pediatric and biomedical research workforces, the Academic Pediatric Association Research in Academic Pediatrics Initiative on Diversity (RAPID) was initiated in 2012. RAPID targets applicants who are members of an underrepresented minority group (URM), disabled, or from a socially, culturally, economically, or educationally disadvantaged background. The program, which consists of both a research project and career and leadership development activities, includes an annual career-development and leadership conference which is open to any resident, fellow, or junior faculty member from an URM, disabled, or disadvantaged background who is interested in a career in academic general pediatrics.MethodsAs part of the annual RAPID conference, a Hot Topic Session is held in which the young investigators spend several hours developing a list of hot topics on the most useful faculty and career-development issues. These hot topics are then posed in the form of six "burning questions" to the RAPID National Advisory Committee (comprised of accomplished, nationally recognized senior investigators who are seasoned mentors), the RAPID Director and Co-Director, and the keynote speaker.Results/conclusionsThe six compelling questions posed by the 10 young investigators-along with the responses of the senior conference leadership-provide a unique resource and "survival guide" for ensuring the academic success and optimal career development of young investigators in academic pediatrics from diverse backgrounds. A rich conversation ensued on the topics addressed, consisting of negotiating for protected research time, career trajectories as academic institutions move away from an emphasis on tenure-track positions, how "non-academic" products fit into career development, racism and discrimination in academic medicine and how to address them, coping with isolation as a minority faculty member, and how best to mentor the next generation of academic physicians

    The GH51 α-l-arabinofuranosidase from Paenibacillus sp. THS1 is multifunctional, hydrolyzing main-chain and side-chain glycosidic bonds in heteroxylans.

    Get PDF
    Background: Conceptually, multi functional enzymes are attractive because in the case of complex polymer hydrolysis having two or more activities defined by a single enzyme offers the possibility of synergy and reduced enzyme cocktail complexity. Nevertheless, multi functional enzymes are quite rare and are generally multi domain assemblies with each activity being defined by a separate protein module. However, a recent report described a GH51 arabinofuranosidase from Alicyclobacillus sp. A4 that displays both α l arabinofuranosidase and ÎČ d xylanase activities, which are defined by a single active site. Following on from this, we describe in detail another multi functional GH51 arabinofuranosidase and discuss the molecular basis of multifunctionality. Results: THSAbf is a GH51 α l arabinofuranosidase. Characterization revealed that THSAbf is active up to 75 °C, stable at 60 °C and active over a broad pH range (4–7). THSAbf preferentially releases para nitrophenyl from the l arabino furanoside ( k cat / K M = 1050 s − 1 mM − 1 ) and to some extent from d galactofuranoside and d xyloside. THSAbf is active on 4 O methylglucuronoxylans from birch and beechwood (10.8 and 14.4 U mg − 1 , respectively) and on sugar beet branched and linear arabinans (1.1 ± 0.24 and 1.8 ± 0.1 U mg − 1 ). Further investigation revealed that like the Alicyclo - bacillus sp. A4 α l arabinofuranosidase, THSAbf also displays endo xylanase activity, cleaving ÎČ 1,4 bonds in heteroxy lans. The optimum pH for THASAbf activity is substrate dependent, but ablation of the catalytic nucleophile caused a general loss of activity, indicating the involvement of a single active center. Combining the α l arabinofuranosidase with a GH11 endoxylanase did not procure synergy. The molecular modeling of THSAbf revealed a wide active site cleft and clues to explain multi functionality
    • 

    corecore