75 research outputs found

    Ground-state phase diagram of the spin-1/2 square-lattice J1-J2 model with plaquette structure

    Full text link
    Using the coupled cluster method for high orders of approximation and Lanczos exact diagonalization we study the ground-state phase diagram of a quantum spin-1/2 J1-J2 model on the square lattice with plaquette structure. We consider antiferromagnetic (J1>0) as well as ferromagnetic (J1<0) nearest-neighbor interactions together with frustrating antiferromagnetic next-nearest-neighbor interaction J2>0. The strength of inter-plaquette interaction lambda varies between lambda=1 (that corresponds to the uniform J1-J2 model) and lambda=0 (that corresponds to isolated frustrated 4-spin plaquettes). While on the classical level (s \to \infty) both versions of models (i.e., with ferro- and antiferromagnetic J1) exhibit the same ground-state behavior, the ground-state phase diagram differs basically for the quantum case s=1/2. For the antiferromagnetic case (J1 > 0) Neel antiferromagnetic long-range order at small J2/J1 and lambda \gtrsim 0.47 as well as collinear striped antiferromagnetic long-range order at large J2/J1 and lambda \gtrsim 0.30 appear which correspond to their classical counterparts. Both semi-classical magnetic phases are separated by a nonmagnetic quantum paramagnetic phase. The parameter region, where this nonmagnetic phase exists, increases with decreasing of lambda. For the ferromagnetic case (J1 < 0) we have the trivial ferromagnetic ground state at small J2/|J1|. By increasing of J2 this classical phase gives way for a semi-classical plaquette phase, where the plaquette block spins of length s=2 are antiferromagnetically long-range ordered. Further increasing of J2 then yields collinear striped antiferromagnetic long-range order for lambda \gtrsim 0.38, but a nonmagnetic quantum paramagnetic phase lambda \lesssim 0.38.Comment: 10 pages, 15 figure

    Lineshape predictions via Bethe ansatz for the one-dimensional spin-1/2 Heisenberg antiferromagnet in a magnetic field

    Get PDF
    The spin fluctuations parallel to the external magnetic field in the ground state of the one-dimensional (1D) s=1/2 Heisenberg antiferromagnet are dominated by a two-parameter set of collective excitations. In a cyclic chain of N sites and magnetization 0<M_z<N/2, the ground state, which contains 2M_z spinons, is reconfigured as the physical vacuum for a different species of quasi-particles, identifiable in the framework of the coordinate Bethe ansatz by characteristic configurations of Bethe quantum numbers. The dynamically dominant excitations are found to be scattering states of two such quasi-particles. For N -> \infty, these collective excitations form a continuum in (q,\omega)-space with an incommensurate soft mode. Their matrix elements in the dynamic spin structure factor S_{zz}(q,\omega) are calculated directly from the Bethe wave functions for finite N. The resulting lineshape predictions for N -> \infty complement the exact results previously derived via algebraic analysis for the exact 2-spinon part of S_{zz}(q,\omega) in the zero-field limit. They are directly relevant for the interpretation of neutron scattering data measured in nonzero field on quasi-1D antiferromagnetic compounds.Comment: 10 page

    Spectral weight contributions of many-particle bound states and continuum

    Full text link
    Cluster expansion methods are developed for calculating the spectral weight contributions of multiparticle excitations - continuum and bound states - to high orders. A complete 11th order calculation is carried out for the alternating Heisenberg chain. For λ=0.27\lambda=0.27, relevant to the material Cu(NO3)2.2.5D2OCu(NO_3)_2.2.5D_2O, we present detailed spectral weights for the two-triplet continuum and all bound states. We also examine variation of the relative weights of one and two-particle states with bond alternation from the dimerized to the uniform chain limit.Comment: 4 pages, 5 figures, revte

    Formation of clusters in the ground state of the t−Jt-J model on a two leg ladder

    Full text link
    We investigate the ground state properties of the t−Jt-J model on a two leg ladder with anisotropic couplings (t,α=J/tt,\alpha=J/t) along rungs and (t′,α′=J′/t′t',\alpha'=J'/t') along legs. We have implemented a cluster approach based on 4-site plaqettes. In the strong asymmetric cases α/α′≪1\alpha/\alpha'\ll 1 and α′/α≪1\alpha'/\alpha\ll 1 the ground state energy is well described by plaquette clusters with charges Q=2,4Q=2,4. The interaction between the clusters favours the condensation of plaquettes with maximal charge -- a signal for phase separation. The dominance of Q=2 plaquettes explains the emergence of tightly bound hole pairs. We have presented the numerical results of exact diagonalization to support our cluster approach.Comment: 11 pages, 9 figures, RevTex

    Two-spinon dynamic structure factor of the one-dimensional S=1/2 Heisenberg antiferromagnet

    Get PDF
    The exact expression derived by Bougourzi, Couture, and Kacir for the 2-spinon contribution to the dynamic spin structure factor Szz(q,ω)S_{zz}(q,\omega) of he one-dimensional SS=1/2 Heisenberg antiferromagnet at T=0T=0 is evaluated for direct comparison with finite-chain transition rates (N≤28N\leq 28) and an approximate analytical result previously inferred from finite-NN data, sum rules, and Bethe-ansatz calculations. The 2-spinon excitations account for 72.89% of the total intensity in Szz(q,ω)S_{zz}(q,\omega). The singularity structure of the exact result is determined analytically and its spectral-weight distribution evaluated numerically over the entire range of the 2-spinon continuum. The leading singularities of the frequency-dependent spin autocorrelation function, static spin structure factor, and qq-dependent susceptibility are determined via sum rules.Comment: 6 pages (RevTex) and 5 figures (Postscript

    Magnon-magnon interactions in the Spin-Peierls compound CuGeO_3

    Full text link
    In a magnetic substance the gap in the Raman spectrum, Delta_R, is approximatively twice the value of the neutron scattering gap, Delta_S, if the the magnetic excitations (magnons) are only weakly interacting. But for CuGeO_3 the experimentally observed ratio Delta_R/Delta_S is approximatively 1.49-1.78, indicating attractive magnon-magnon interactions in the quasi-1D Spin-Peierls compound CuGe_3. We present numerical estimates for Delta_R/Delta_S from exact diagonalization studies for finite chains and find agreement with experiment for intermediate values of the frustration parameter alpha. An analysis of the numerical Raman intensity leads us to postulate a continuum of two-magnon bound states in the Spin-Peierls phase. We discuss in detail the numerical method used, the dependence of the results on the model parameters and a novel matrix-element effect due to the dimerization of the Raman-operator in the Spin-Peierls phase.Comment: submitted to PRB, Phys. Rev. B, in pres

    Food bank operational characteristics and rates of food bank use across Britain

    Get PDF
    Background Food banks are a common community-based response to household food insecurity in high-income countries. While the profile of their users and nature of the quality of food they provide have been researched, few studies have examined their operational characteristics to explore the accessibility of their services for people at risk of food insecurity. This study describes the nature of operations in a food bank network operating in Britain and explores how operations are associated with volume of use. Methods Data from The Trussell Trust Foodbank’s network of 1145 distribution centres in 2015/16 on hours of operation, locations, and usage were combined with national statistics on Working Tax Credit claimants, disability and unemployment. Descriptive statistics focused on how often and when food banks were open within local authorities. The relationships between operational characteristics and volume of use were examined using regression analyses. Interaction terms tested how relationships between indicators of need with food bank usage changed with operational characteristics. Results Weekday operating hours were primarily between the hours of 10 a.m. and 2 p.m., but at any given hour no more than 20% of distribution centres were open, with fewer than 3% open after 4 pm. Where food banks had fewer distribution centres and operating hours, the volume of food bank usage was lower. In-work poverty, disability, and unemployment rates were all associated with higher volume of usage; however, the relationship between disability and food bank use was modified by the density of food banks and number of operating hours. Where food banks were less accessible, the relationship between disability and food bank use was diminished. Conclusions These findings suggest operational characteristics are an important part of access to food banks and raise questions about the ability of food banks to meet the needs of people at risk of food insecurity in Britain

    Mental health and care needs of British children and young people aged 6-17

    Get PDF
    We conducted a scoping literature review based on a sample of 51 UK-based research articles published since 2004, focusing on children and young people aged 6–17 years. Taking the 2004 Office for National Statistics survey of child and adolescent mental health as a pivotal point in the development of the field, our aims were to identify the mental health difficulties featured in extant literature since the survey; uncover critical gaps; and propose avenues for advancing the field. Articles were critically reviewed, coded, and summarised. We found socioeconomic disadvantage, family instability and parental distress are cited as key contributing factors to mental distress. Following categorizations in the 2004 survey, emotional, conduct, and hyperactivity difficulties were the most commonly researched and reported topics. The needs of migrant, BAME, physically disabled, and LGBTQ children were severely underrepresented in the literature, as were those of looked after children. We also found a strong reliance on clinic-based convenience samples, which obfuscates the needs of children who are not able to access care. Further research using inclusive, population-based samples and diverse methods is needed going forward

    Quasiparticles governing the zero-temperature dynamics of the 1D spin-1/2 Heisenberg antiferromagnet in a magnetic field

    Get PDF
    The T=0 dynamical properties of the one-dimensional (1D) s=1/2s=1/2 Heisenberg antiferromagnet in a uniform magnetic field are studied via Bethe ansatz for cyclic chains of NN sites. The ground state at magnetization 0<Mz<N/20<M_z<N/2, which can be interpreted as a state with 2Mz2M_z spinons or as a state of MzM_z magnons, is reconfigured here as the vacuum for a different species of quasiparticles, the {\em psinons} and {\em antipsinons}. We investigate three kinds of quantum fluctuations, namely the spin fluctuations parallel and perpendicular to the direction of the applied magnetic field and the dimer fluctuations. The dynamically dominant excitation spectra are found to be sets of collective excitations composed of two quasiparticles excited from the psinon vacuum in different configurations. The Bethe ansatz provides a framework for (i) the characterization of the new quasiparticles in relation to the more familiar spinons and magnons, (ii) the calculation of spectral boundaries and densities of states for each continuum, (iii) the calculation of transition rates between the ground state and the dynamically dominant collective excitations, (iv) the prediction of lineshapes for dynamic structure factors relevant for experiments performed on a variety of quasi-1D antiferromagnetic compounds, including KCuF3_3, Cu(C4_4H4_4N2)(NO3)2_2)(NO_3)_2, and CuGeO3_3.Comment: 13 pages, 12 figure

    Phase diagram of an asymmetric spin ladder

    Full text link
    We investigate an asymmetric zig-zag spin ladder with different exchange integrals on both legs using bosonization and renormalization group. When the leg exchange integrals and frustration both are sufficiently small, renormalization group analysis shows that the Heisenberg critical point flows to an intermediate-coupling fixed point with gapless excitations and a vanishing spin velocity. When they are large, a spin gap opens and a dimer liquid is realized. Here, we find a continuous manifold of Hamiltonians with dimer product ground states, interpolating between the Majumdar-Ghosh and sawtooth spin-chain model.Comment: 4 pages, 2 EPS figures, to be published in PR
    • …
    corecore